
Published in Transactions on Machine Learning Research (03/2025)

Evolution of Discriminator and Generator Gradients
in GAN Training: From Fitting to Collapse

Weiguo Gao wggao@fudan.edu.cn
School of Mathematical Sciences & School of Data Science, Fudan University
Shanghai Key Laboratory of Contemporary Applied Mathematics

Ming Li mingli23@m.fudan.edu.cn
School of Mathematical Sciences, Fudan University

Reviewed on OpenReview: https: // openreview. net/ forum? id= 58gPkcVbFL

Abstract

Generative Adversarial Networks (GANs) are powerful generative models but often suffer
from mode mixture and mode collapse. We propose a perspective that views GAN training
as a two-phase progression from fitting to collapse, where mode mixture and mode col-
lapse are treated as inter-connected. Inspired by the particle model interpretation of GANs,
we leverage the discriminator gradient to analyze particle movement and the generator
gradient, specifically “steepness,” to quantify the severity of mode mixture by measuring
the generator’s sensitivity to changes in the latent space. Using these theoretical insights
into evolution of gradients, we design a specialized metric that integrates both gradients
to detect the transition from fitting to collapse. This metric forms the basis of an early
stopping algorithm, which stops training at a point that retains sample quality and diver-
sity. Experiments on synthetic and real-world datasets, including MNIST, Fashion MNIST,
and CIFAR-10, validate our theoretical findings and demonstrate the effectiveness of the
proposed algorithm.

1 Introduction

Generative Adversarial Networks (GANs) serve as a popular technique for unsupervisedly learning gener-
ative models of structured and complicated data (Goodfellow et al., 2014; Nowozin et al., 2016; Arjovsky
et al., 2017; Goodfellow, 2017; Li et al., 2017; Nguyen et al., 2017; Ghosh et al., 2018; Luo & Yang, 2024).
GANs typically involve a generator that generates samples resembling real samples, and a discriminator
that differentiates between real and generated samples. Through adversarial training, the generator learns
to produce increasingly realistic samples, while the discriminator enhances its ability to distinguish them,
resulting in refined models.

One of the primary challenges in training GANs is fine-tuning the interactive dynamics between the generator
and the discriminator. If these dynamics are not well-aligned, several problematic behaviors can arise. Among
the most common issues are mode collapse (Goodfellow, 2017) and mode mixture (An et al., 2020). Mode
collapse occurs when the generator produces limited varieties of samples, collapsing to very few modes, while
mode mixture involves blending distinct modes, resulting in unrealistic or ambiguous outputs. Numerous
GAN variants have been proposed to address mode collapse (Nowozin et al., 2016; Arjovsky et al., 2017; Li
et al., 2017; Nguyen et al., 2017; Ghosh et al., 2018; Luo & Yang, 2024), alongside theoretical insights (Sun
et al., 2020; Becker et al., 2022). For mode mixture, research has focused on mitigation strategies, particularly
within the framework of optimal transport (Lei et al., 2019; An et al., 2020; Gu et al., 2021) and rejection
sampling (Tanielian et al., 2020).

Despite extensive research on GAN training, current studies share two common limitations: (i) mode col-
lapse (Goodfellow, 2017) and mode mixture (An et al., 2020; Tanielian et al., 2020) are typically treated

1

https://openreview.net/forum?id=58gPkcVbFL


Published in Transactions on Machine Learning Research (03/2025)

as separate, independent issues, and (ii) mode collapse is frequently viewed as an indicator of training fail-
ure (Arjovsky et al., 2017; Luo & Yang, 2024), and the current literature primarily focuses on techniques to
prevent or mitigate this phenomenon (Nowozin et al., 2016; Arjovsky et al., 2017; Li et al., 2017; Nguyen
et al., 2017; Ghosh et al., 2018; Luo & Yang, 2024). In contrast, we propose a perspective that views GAN
training as a two-phase progression from fitting to collapse. In this view, mode mixture is an integral part
of the fitting phase, where the generator increasingly aligns with the real data distribution. During this
alignment, some generated samples may fall outside the modes, reflecting the presence of mode mixture.
Mode collapse does not signify outright failure. Instead, it occurs when the model tries to alleviate mode
mixture. In this process, generated samples are pushed away from the modes, leading to a loss of diversity.
By identifying the transition from fitting to collapse, early stopping can prevent the loss of diversity while
preserving sample quality.

To illustrate this progression, we train the Non-Saturating GAN (NSGAN) (Goodfellow et al., 2014) on
a 3-dimensional Gaussian mixture dataset and MNIST (LeCun et al., 1998), recording generated samples
as shown in fig. 1. In the first row, the orange dots represent real samples drawn from the Gaussian
mixture, while the blue dots show generated samples. Initially, the generated samples cluster near the
origin (subfigure 1). As training progresses, these samples spread out and align with the modes of the real
distribution (subfigure 2–3). This marks the fitting phase, where the generator increasingly captures the
structure of the real distribution. Nevertheless, during this phase, some generated samples may fall outside
the modes, indicating the presence of mode mixture. As training continues, the generated samples start to
collapse into fewer modes (subfigure 3–6), eventually leading to a severe loss of diversity. This collapse phase
is evident in the Gaussian mixture dataset, highlighting the need for early stopping to preserve diversity. In
the second row, we map both real MNIST images and generated images into a common 3-dimensional space
using UMAP (Uniform Manifold Approximation and Projection) (McInnes et al., 2018), where we observe
a similar progression.

Figure 1: The real and generated samples by training NSGAN on a 3-dimensional Gaussian mixture dataset
and MNIST. First row: Gaussian mixture dataset. Orange: Real samples. Blue: Generated samples.
Epochs from left to right: 0, 15, 60, 450, 850, 980. Initially, the generated samples cluster near the origin,
then spread out and align with the real modes. However, instead of becoming more refined, they eventually
collapse to part of the modes. Second row: MNIST embedded in a 3-dimensional space. Colored:
Real samples. Black: Generated samples. Epochs (Batches) from left to right: 0(0), 0(8), 0(32), 0(64),
32(0), 47(0). Similar progression has been observed.

Generalizing these observations, we propose a perspective that views GAN training as a two-phase progression
from fitting to collapse. Our main tool for analyzing the two phases is the study of gradient dynamics, as
gradients of the discriminator and generator functions with respect to their inputs provide insight into how
generated samples evolve. Table 1 provides an overview of each phase. Identifying the transition from fitting
to collapse is crucial, as stopping training at this point can retain sample quality and diversity: stopping too
early yields unrealistic samples, while stopping too late leads to reduced diversity.

2



Published in Transactions on Machine Learning Research (03/2025)

Table 1: An overview of the two phases: fitting, and collapse, which includes a brief description and the
roles of discriminator and generator gradients.

Fitting Collapse

Description Particles move toward and converge around
the modes, reducing their spread and miti-
gating mode mixture.

Particles near mode boundaries are pushed
away, eventually leading to mode collapse.

Discriminator
gradient

Guides particles from the initial noise prior
toward regions close to the modes.

Pushes particles near mode boundaries
away with significant force and magnitude.

Generator
gradient

Measures how the generator maps nearby
points in the latent space to distant points
in the output space, quantitatively measure
the severity of mode mixture.

Drops in magnitude as particles near mode
boundaries are pushed away and concen-
trate around fewer modes.

Our contributions can be summarized as follows:

• We propose a perspective that views GAN training as a two-phase progression from
fitting (section 3) to collapse (section 4), where mode mixture and mode collapse are treated as
interconnected. Notably, we highlight the underexplored idea that mode collapse (i.e., the collapse
phase) may emerge in the later stages of a converging GAN (i.e., the fitting phase).

• We employ gradient-based tools to analyze each phase, using the discriminator gradient
which guides particle movement and the generator gradient, termed “steepness,” to
quantify mode mixture severity. These tools are detailed in section 2.

• We develop an early stopping algorithm to optimize GAN training by detecting the
transition from fitting to collapse. The early stopping algorithm, outlined in section 4.3, uses
a metric based on discriminator and generator gradients. By intrinsically capturing GAN training
dynamics without direct dependence on generated or real images, it identifies a stopping point where
both sample quality and diversity are retained, as empirically demonstrated in section 6.

2 Technical Preliminaries and Basic Assumptions

In this section, we provide the technical preliminaries and basic assumptions. We begin with an overview
of the gradient dynamics in section 2.1, focusing on how the generator and discriminator gradients shape
the behavior of generated samples across the two phases, as summarized in table 1. In section 2.2, we
present an interpretation of GANs as particle models, where the discriminator gradient guides the movement
of generated samples as particles. In section 2.3, we introduce the concept of steepness, derived from
the generator gradient, to quantify the severity of mode mixture. Finally, in section 2.4, we outline the
assumptions we make regarding the real data distribution and the noise prior.

2.1 An Overview of Gradient Dynamics in GANs

In this work, the main tools we use to analyze the proposed two phases of GAN training are the generator and
discriminator gradients. To clarify, we consider gradients as derivatives of the generator and discriminator
functions with respect to their inputs, rather than with respect to network parameters. In section 2.2, we
interpret the divergence GANs as particle models, where generated samples are viewed as particles, each
moving based on a function of the discriminator’s gradient. During the fitting phase, this gradient guides
particles from the initial noise prior towards regions near the modes. In section 2.3, we define steepness
based on the generator’s gradient. Steepness quantifies how the generator maps nearby points in the latent
space to potentially distant points in the output space, providing a measure of mode mixture severity that
enables a quantitative analysis of this phenomenon in the fitting phase. The collapse phase is characterized
by two distinctive behaviors. From a particle perspective, certain particles near the mode boundaries start

3



Published in Transactions on Machine Learning Research (03/2025)

Algorithm 1 Interpretation of Non-Saturating GAN as a Particle Model (c.f. (Yi et al., 2023))
Require: The discriminator dω (with ω denoting the discriminator’s parameters) and the generator gθ (with

θ denoting the generator’s parameters), the noise prior pz, batch size m > 0, step size s > 0
1: for number of training iterations do
2: Train the discriminator dω as in (Goodfellow et al., 2014).
3: Sample zi’s from the noise prior pz(z).
4: Generate particles Zi = gθ(zi), (1 ≤ i ≤ m).
5: Update the particles Ẑi = Zi + s · ∇dω(Zi)/dω(Zi), (1 ≤ i ≤ m).
6: Apply the stop gradient operator to Ẑi and update gθ by descending ∇θ

1
m

∑m
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2.

7: end for

to “escape” from these modes, a phenomenon we analyze using the discriminator’s gradient. From a global
perspective, generated particles begin to concentrate around only a few modes. We use the generator’s
gradient to characterize this concentration effect, giving a comprehensive view of the collapse phase.

2.2 Discriminator Gradient: Guiding Particle Movement

Divergence GANs such as Vanilla GAN (Goodfellow et al., 2014), NSGAN (Goodfellow et al., 2014) and
f -GAN (Nowozin et al., 2016) can be interpreted as particle models (Gao et al., 2019; Johnson & Zhang,
2019; Franceschi et al., 2023; Huang & Zhang, 2023; Yi et al., 2023). This paper focuses on the NSGAN for
its practicality and conciseness. And we outline the methodology for other Divergence GANs in appendix H.
The pseudocode of NSGAN as a particle model is presented in algorithm 1, which is fundamentally grounded
in the work of Yi et al. (2023). This interpretation is essentially equivalent to the original NSGAN (Yi et al.,
2023, theorem 3.2). Accordingly, we refer to the generated samples as particles throughout this paper.
Unless otherwise stated, we assume the discriminator is optimal1, i.e., d∗(x) = pdata(x)/

(
pdata(x) + pg(x)

)
,

as established by Goodfellow et al. (2014) (we omit the subscript ω for brevity hereafter). Consequently,
the vector field ∇d(x)/d(x) that guides particle movement can be reformulated in terms of the density ratio
r(x) = pdata(x)/pg(x) as

∇d∗(x)
d∗(x) = ∇r(x) · 1

r(x)(1 + r(x)) . (1)

2.3 Generator Gradient: Measuring Mode Mixture Severity

In addition to the discriminator’s role in guiding particle movement, the generator’s gradient provides a
measure of mode mixture severity. As described in algorithm 1, a particle x near a mode is updated in the
direction of ∇d∗(x)/d∗(x), typically pointing towards the nearest mode (see section 3). However, between
adjacent modes, critical points exist where nearby particles are pushed apart in opposite directions. During
training, two close latent points z1 and z2 may map to outputs gθ(z1) and gθ(z2) that are far apart. This
behavior reflects high sensitivity in the generator’s mapping, indicated by a large spectral norm of the
Jacobian of gθ. This motivates the concept of steepness (see definition 2.1), which quantifies the generator’s
sensitivity across the latent space. Higher steepness corresponds to regions where small differences in latent
points produce large separations in the output space, mitigating the severity of mode mixture. Importantly,
this definition is invariant under orthogonal coordinate transformations, ensuring that steepness Sg captures
intrinsic properties of the generator’s mapping. This notion of steepness is related to several works that
study the conditioning and Lipschitz constants of the generator Jacobian, which we discuss in section 5.
Definition 2.1. Let g : Rn → Rn be continuously differentiable. The steepness of g at a point x, denoted by
Sg(x), is defined as the spectral norm of the Jacobian of g at x:

Sg(x) = ∥Jg(x)∥2. (2)

1 For the sake of completeness, we also provide an analysis of a class of suboptimal discriminators in appendix D.

4



Published in Transactions on Machine Learning Research (03/2025)

2.4 Assumptions on Real Data and Noise Prior

Gaussian smoothing of the data, as applied in assumption 2.1, is a commonly used approach in machine
learning to transform discrete datasets into continuous probability distributions. This method enables math-
ematical analysis, aligns with standard data preprocessing practices, and is widely adopted in generative
modeling (Goldfeld et al., 2020; Ho et al., 2020; Song et al., 2021; Karras et al., 2022). By employing kernel
density estimation with a Gaussian kernel Kσ(·, ·) and covariance matrix σ2In, we can provide a smooth
and representative approximation of the underlying data distribution.
Assumption 2.1. Let x1, x2, . . . , xN ∈ Rn, where the xi’s are in ascending order if n = 1. We assume
that the real data distribution has the following probability density function

pdata(x) = 1
N

N∑
i=1

Kσ(x, xi) := 1
N

N∑
i=1

1
(2πσ2)n/2 · exp

(
− ∥x − xi∥2

2
2σ2

)
, (3)

Optionally, we may assume a separation condition parameter ∆ > 0, such that min1≤i<j≤N ∥xi − xj∥2 ≥ ∆.

We make the following assumption on the noise prior pz(z) for reasons in appendix B.
Assumption 2.2. Let n be the dimension of real samples. We assume that the noise prior pz ∼ N (0, In)
is an n-dimensional standard Gaussian distribution.

3 The Fitting Phase: Gradient Dynamics

The fitting phase of GAN training refers to the process where generated particles align with the modes of
the real data distribution. This alignment is driven by both discriminator gradients and generator gradients,
each playing a distinct yet complementary role: (i) discriminator gradients guide the generated particles by
providing directions toward the nearest modes, and (ii) generator gradients, specifically steepness, determines
the generator’s ability to separate modes and reduce mode mixture. Together, these gradients ensure that
generated particles converge around real modes, even though some particles may still remain outside or
within the inter-modal regions, reflecting mode mixture. In this section, we analyze the role of discriminator
gradients in section 3.1 and the impact of generator steepness in section 3.2.

3.1 Evolution of Discriminator Gradients

In this subsection, we analyze and visualize how discriminator gradients guide generated particles towards
modes during the fitting phase. Importantly, we assume an optimal discriminator, which ensures exact update
directions for particle movement. This assumption applies specifically to the fitting phase and does not hold
in the collapse phase, where the discriminator may lose its optimality (see section 4.1). While prior work has
established a solid theoretical foundation by showing that an optimal discriminator induces a Wasserstein
gradient flow to align pg with pdata (Franceschi et al., 2023; Yi et al., 2023), we examine four illustrative
scenarios in table 2 to investigate how this process depends on the configurations of pg and pdata

2.

Table 2: Descriptions and configurations of pdata and pg in the four cases.

Description pdata pg

Case 1 Initialization with concentrated particles N ([±1, ±1], 0.1I2) N ([0, 0], 0.2I2)

Case 2 Particles covering all modes N ([±1, ±1], 0.1I2) U([−2, 2]×[−2, 2])

Case 3 Particles concentrated near a single mode N ([±1, ±1], 0.1I2) N ([1, 1], I2)

Case 4 Globally separated modes N ([±3, ±3], 0.1I2) N ([3, 3], 3I2)

2 For simplicity, the 3-dimensional Gaussian mixture dataset in fig. 1 is projected onto the xy-plane, and the covariance of
each Gaussian component is set to 0.1I.

5



Published in Transactions on Machine Learning Research (03/2025)

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

1.10 1.05 1.00 0.95 0.901.10

1.05

1.00

0.95

0.90

0.0

0.2

0.4

0.6

0.8

1.0

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

1.10 1.05 1.00 0.95 0.901.10

1.05

1.00

0.95

0.90

0.00

0.16

0.32

0.48

0.64

0.80

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

1.10 1.05 1.00 0.95 0.901.10

1.05

1.00

0.95

0.90

0.0

0.2

0.4

0.6

0.8

1.0

4 2 0 2 4
x

4

2

0

2

4

y

3.10 3.05 3.00 2.95 2.903.10

3.05

3.00

2.95

2.90

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Figure 2: The vector field ∇d∗(x)/d∗(x) with zoomed-in views around the bottom left mode. Colorbars in
the left subfigures show discriminator values (i.e., d∗(x)). Top left: Case 1. Top right: Case 2. Bottom
left: Case 3. Bottom right: Case 4. These subfigures highlight how discriminator gradients guide generated
particles under different configurations.

Case 1 (top left subfigure of fig. 2) shows that, the update vector field ∇d∗(x)/d∗(x) pulls particles toward
the direction of the nearest modes, with vector lengths proportional to their distances from the modes.
This ensures rapid initial movement of particles towards the modes at initialization. For case 2 (top right
subfigure of fig. 2), particles near the mode centers exhibit minimal movement due to weak gradient forces,
while those farther away are guided towards the nearest mode by stronger discriminator gradients. This
results in a progressive sharpening of pg, as particles accumulate near the modes. For case 3 (bottom left
subfigure of fig. 2), the discriminator values (indicated by the colorbar) differ significantly across modes:
the covered mode (which centers at [1, 1]) has the lowest value, while the farthest mode (which centers at
[−1, −1]) has the highest. The vector field’s intensity peaks near unoccupied modes and diminishes near
crowded ones, This dynamic ensures redistribution of particles to balance coverage across modes. For case 4
(bottom right subfigure in fig. 2), the gradient intensity weakens near all modes, making particle movement
less effective. Proper initialization and balanced training are critical in this setting to avoid stagnation3.

The role of discriminator gradients during the fitting phase. Discriminator gradients play a crucial
role in guiding generated particles toward the nearest modes during the fitting phase. This explains why
particles, initially clustered (the first subfigure of fig. 1), spread out and move toward modes. For locally
clustered modes (Cases 1–3), the gradients effectively align particles with the modes. For globally separated
modes (Case 4), the gradients weaken, and successful convergence depends on careful initialization and
balanced training.

3.2 Evolution of Steepness

While discriminator gradients guide particles toward modes, mode mixture is still commonly observed in
practice. To understand this phenomenon, we analyze the role of generator gradients, characterized by the
steepness of the generator function. Steepness measures how sharply the generator transforms adjacent
points in the latent space into distinct points in the data space. In this subsection, we first establish that
the optimal generator must exhibit significant steepness to transform a standard Gaussian distribution into
pdata (both in 1-dimensional and n-dimensional cases). Conversely, when the steepness is insufficient, the

3 Please refer to appendix C for the corresponding theoretical results.

6



Published in Transactions on Machine Learning Research (03/2025)

transformation of the standard Gaussian distribution via the generator does not fully match pdata. This
discrepancy causes mode mixture, where generated samples fail to align perfectly with the real modes.

Steepness of measure-preserving maps. We begin by analyzing the steepness of the optimal generator
function g that satisfies g#pz = pdata. In the 1-dimensional case, any measure-preserving map g can be
expressed as g = Ψ−1 ◦ h ◦ Φ, where Φ and Ψ are the cumulative distribution functions (CDFs) of N (0, 1)
and pdata, respectively, and h is a measure-preserving map of the uniform distribution U(0, 1). Among
the infinitely many possible choices of h, the identity map holds particular significance. In this case, the
corresponding g represents the optimal transport map from pz to pdata under the Wasserstein distance with
strictly convex cost functions (Santambrogio, 2015), including the widely-used 2-Wasserstein distance as a
specific example4.
Theorem 3.1 (Steepness of 1-dimensional measure-preserving maps). Assume that the real data distribution
pdata(x) satisfies assumption 2.1 with n = 1 and separation condition parameter ∆ = 6σ. Let Φ(x) and
Ψ(x) denote the cumulative distribution functions (CDFs) of N (0, 1) and pdata(x), respectively. Define
g(x) := Ψ−1(Φ(x)). Then, there exists a point x∗ ∈ R such that the steepness of g at x∗ satisfies:

Sg(x∗) ≥ min
1≤i≤N−1

σ · exp
( (xi+1 − xi)2

8σ2

)
· exp(−q2), (4)

where q is the (1 − 1/N)th quantile of the standard Gaussian distribution.

As indicated by theorem 3.1, the steepness Sg grows exponentially with the square of the distance between
neighboring modes. This means that for distributions where the modes are further apart, the generator
function must exhibit a much larger steepness to accurately map samples between modes. Conversely, Sg is
inversely related to the variance σ2 of each mode. A smaller variance requires the generator to transition
more sharply between modes, resulting in a steeper function. This property extends to higher dimensions,
as demonstrated in theorem 3.2, which provides an explicit lower bound for Sg.
Theorem 3.2 (Steepness of n-dimensional measure preserving maps). Assume that the real data distribution
pdata(x) satisfies assumption 2.1, and that the noise prior pz(z) is the truncated Gaussian Nr(0, In) defined
on the n-dimensional ball Br(0). Without loss of generality, suppose xi ̸= 0 for all 1 ≤ i ≤ N . Let
g : Br(0) → Rn be a continuously differentiable, piecewise injective function satisfying g#pz = pdata. Then,
there exists a point x∗ ∈ Rn such that the steepness Sg(x∗) satisfies Sg(x∗) ≥ M , where

M = δ · σ ·
√

2π · max
λ∈[0,2]

min
1≤i≤N

exp
(∥λx̄ − xi∥2

2
2nσ2

)
. (5)

Here, x̄ =
∑N

i=1 xi/N is the mean of the mode centers, and δ = exp(−r2/2)/
√

2π accounts for the truncation
of the Gaussian distribution.

Similar to the 1-dimensional case, the bound exhibits exponential growth with increasing distances ∥λx̄−xi∥2
and with decreasing variance σ2. Consequently, when the modes are widely separated or when the standard
deviation σ is small, Sg becomes significantly large. This observation may provide insight into the common
practice of normalizing or rescaling image data during preprocessing, as these steps can reduce the steepness
required for the generator to map the noise distribution to the real data distribution, which potentially
influence the training dynamics.

Evolution of steepness. We have established that in order to map a standard Gaussian distribution to
pdata, the generator function must exhibit large steepness. A natural question arises: How does the steepness
evolve during training? In the next theorem 3.3, we analyze the setting where pdata is a symmetric mixture
of Gaussians and derive an evolution equation in continuous time for the steepness of the generator function
gt at z = 0, i.e., g′

t(0) (which follows from the observation in fig. 3 that the generator function reaches
its maximum steepness at z = 0). This equation provides two key implications: (i) when the third-order
derivative of gt at 0, i.e., g

(3)
t (0), is small compared to g′

t(0) (for example, when gt can be well-approximated
4 For a visualization of generator functions g corresponding to different pdata, please refer to appendix I.

7



Published in Transactions on Machine Learning Research (03/2025)

by a linear function near x = 0, as fig. 3 depicts), the steepness g′
t(0) monotonically increases; and (ii) at

an early stage of training, the dominant terms in the numerator and denominator of the right-hand side of
the evolution equation are (µ2 − σ2)/σ4 · (g′

t(0))3 and (g′
t(0))2, respectively. As a result, g′

t(0) initially grows
exponentially with rate (µ2 − σ2)/σ4. This suggests that when the modes are well separated (µ ≫ σ), the
generator rapidly increases its steepness to match the target distribution. Theorem 3.3 uses the gradient-flow
framework, which is a common idealization in theoretical analyses, as it allows us to capture the continuous-
time dynamics underlying the update process. In practice, this corresponds to settings where the generator
learning rate (s in algorithm 1) is sufficiently small and the generator is smooth, so that its evolution can be
well-approximated by a continuous-time trajectory. Although this gradient-flow assumption is an abstraction
from the discrete and stochastic updates used in practical implementations, it provides clear insights into the
generator’s behavior, most notably the rapid increase in steepness during early training, without imposing
overly restrictive conditions on the generator. Our analysis indicates that similar trends are observed in
experiments even when the dynamics deviate from the idealized gradient-flow limit. In particular, while
strict monotonicity may not always hold in practice due to the complexities of real-world settings, our
experiments (see section 6) confirm that steepness increases sharply during early training, enabling the
generator to better capture different modes and reducing the severity of mode collapse.
Theorem 3.3 (Evolution of steepness under a symmetric mixture of Gaussians). Suppose pdata is a sym-
metric mixture of Gaussians

pdata ∼ 0.5N (−µ, σ2) + 0.5N (µ, σ2) (6)
where µ ≫ σ, i.e., the modes are well separated, and that the discriminator is optimal, i.e., the discriminator
consistently provides the precise moving direction for the particle. Let gt : R → R be a one-dimensional
generator evolving in continuous time t ≥ 0 according to the gradient-flow limit of the update

gt+∆t(z) = gt(z) + ∆t · d′
t(gt(z))

dt(gt(z)) , (7)

as in algorithm 1, where
dt(x) = pdata(x)

pdata(x) + pgt
(x) , (8)

and pgt is the push-forward of the standard normal N (0, 1) under gt. Assume that gt is continuously differ-
entiable for all t ≥ 0 with g0 being an odd function and g′

0(0) > 0. Then the steepness of g at z = 0, namely
g′

t(0), satisfies the ODE

d
dt

g′
t(0) = (µ2 − σ2)/σ4 · (g′

t(0))3 + g′
t(0) + g

(3)
t (0)

exp(−µ2/(2σ2))/σ · (g′
t(0))3 + (g′

t(0))2 . (9)

We remark that while theorem 3.3 focuses on the two-Gaussian case, the underlying principle theoretically
extends to distributions with more modes, though the corresponding evolution equations become signifi-
cantly more complex and warrant a separate discussion. In contrast, for the simpler case of a single-mode
distribution, the steepness admits a closed-form analytical expression. We provide a detailed analysis of this
setting in appendix C.

Quantitative relationship between steepness and mode mixture severity. Next, we present quan-
titative results that illustrate how the steepness of the generator impacts the severity of mode mixture, as
detailed in theorem 3.4. The theorem implies the following: (i) mode mixture is inevitable when steepness
is insufficient: The probability that particles fall into the regions between adjacent modes (i.e., the mode
mixture regions) depends inversely on the steepness k of the generator. Specifically, for small k, these prob-
abilities increase significantly, indicating that a less steep generator leads to more severe mode mixture. (ii)
sufficient steepness minimizes mode mixture: As k increases, the probability of particles falling into mode
mixture regions decreases. This reflects the ability of a steep generator to tightly map latent samples to real
modes, thereby aligning generated particles with the real data distribution and reducing overlap between
modes.

Figure 3 visually supports these implications. In the left subfigure, different generator functions with varying
steepness are depicted, showcasing their ability to align latent and real distributions. The right subfigure

8



Published in Transactions on Machine Learning Research (03/2025)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

15
10

5
0
5

10
15

g(
x)

g(0) = 2
g(0) = 5
g(0) = 10
g(0) = 100

g(x) = x
Optimal g *

15 10 5 0 5 10 15
x

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

De
ns

ity
 o

f g
#
p z

g(0) = 2
g(0) = 5
g(0) = 10
g(0) = 100
(0, 1)

1
2 ( 8, 1) + 1

2 (8, 1)

Figure 3: Left: Generator functions g with varying steepness at x = 0. Right: The density plot of
pg = g#pz, with pdata ∼ 0.5N (−8, 1)+0.5N (8, 1). The shaded areas represent the severity of mode mixture.
Generator functions with larger steepness exhibit less severe mode mixture. Quantitative results are detailed
in theorem 3.4.

highlights the severity of mode mixture for the case N = 2 with x1 = −x2 = 8, where shaded areas represent
the mode mixture regions. These visualizations confirm that a larger steepness reduces the severity of mode
mixture, consistent with the theoretical findings in theorem 3.4. Practically, this underscores the importance
of designing and training generators with sufficient steepness to alleviate mode mixture.
Theorem 3.4 (Relationship between steepness and mode mixture severity). Assume that the real data
distribution pdata(x) satisfies assumption 2.1 with n = 1 and separation condition parameter ∆ = 6σ.
Furthermore, assume that the generator function g is increasing and satisfies supx∈R Sg(x) ≤ k. Additionally,
assume that

g−1
(xi + xi+1

2

)
= Φ−1

(
Ψ

(xi + xi+1

2

))
, (10)

where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
and Ψ(x) is the CDF of the distribution pdata(x). Then, the probability that the particles fall into the interval

N−1⋃
i=1

[xi + 3σ, xi+1 − 3σ], (11)

which indicates mode mixture, is at least

N−1∑
i=1

(
Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
+ xi+1 − xi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
− xi+1 − xi − 3σ

2k

))
. (12)

The role of steepness during the fitting phase. To push forward a standard Gaussian to pdata, the
generator’s steepness exhibit exponential growth with increasing mode separation and inverse proportion-
ality to mode variance. Under certain assumptions, steepness increases during training, aligning generated
particles with real modes. Furthermore, mode mixture severity inversely correlates with steepness, such
that higher steepness reduces overlap between modes. These findings collectively explain why mode mixture
severity diminishes during the fitting phase, though it often cannot be entirely eliminated.

4 The Collapse Phase: Gradient Dynamics and Detection

In this section, we examine the collapse phase, where the diversity of generated samples deteriorates as they
concentrate around fewer modes. This phase emerges at the end of the fitting phase, when generated samples
closely approximate the real data. We investigate the underlying mechanisms of collapse, highlighting the
role of discriminator gradients in driving particle dynamics in section 4.1 and its relationship to generator

9



Published in Transactions on Machine Learning Research (03/2025)

steepness in section 4.2. Building on these insights, we introduce a practical early stopping algorithm
in section 4.3 to stop GAN training at the critical transition from fitting to collapse, thereby preserving
diversity.

4.1 Collapse Induced by Discriminator Gradients

In this subsection, we analyze the role of the discriminator gradient ∥∇d(x)/d(x)∥2 in the collapse phase.
Collapse occurs at the end of the fitting phase, where generated samples closely approximate real data.
Unlike the optimal discriminator in Vanilla GAN, which assigns uniform values of 0.5 to both real and
generated samples at convergence, the optimal discriminator in NSGAN exhibits a more nuanced behavior.
It assigns values near 0.5 at the central regions of the modes, values close to 0 in regions with scarce real
data, and gradually transitions between these extremes.

A locally linear approximation of the discriminator. This behavior arises from two key mechanisms.
First, recall that the optimal discriminator in NSGAN can be expressed as d∗(x) = pdata(x)/

(
pdata(x) +

pg(x)
)

(Goodfellow et al., 2014). At the central regions of a mode, as discussed in section 3.1, empirical
observations suggest the following dynamics: particles near the mode are attracted to it (Case 2). Conversely,
an overaccumulation of particles at a mode triggers redistribution mechanisms (Case 3), which drive particles
toward alternative modes to ensure balanced coverage of the data distribution. These dynamics collectively
lead to the assumption that pg(x) ≈ pdata(x), which in turn implies d∗(x) ≈ 0.5. In regions far from the
modes, pdata(x) ≈ 0. Due to the smoothing effect of pg(x), which spreads probability mass beyond the
support of pdata, pg(x) remains finite. Consequently, d∗(x) approaches 0. Second, the smoothing effect of
pg(x) plays a critical role in shaping the transition between these extremes. Unlike pdata, which is sharply
concentrated within the modes, pg(x) spreads probability mass more broadly, partly due to the mode mixture
effects. Please refer to appendix G for empirical evidence on a toy example and real datasets. To better
characterize the behavior of particle movement, we adopt a locally linear approximation of the discriminator,
detailed in assumption 4.1.
Assumption 4.1 (A locally linear approximation of the discriminator). Assume that the real data distribu-
tion pdata(x) satisfies assumption 2.1 with separation condition parameter ∆ = 8σ. We assume that at the
end of the fitting phase where generated samples closely resemble real samples, the discriminator d(x) is of
the form

d(x) =


1
2 − 1

8σ
· ∥x − xi∥2, x ∈ B4σ(xi),

0, otherwise.
(13)

Discriminator gradients near mode boundaries. We compute ∥∇d(x)/d(x)∥2 to analyze gradient
behavior near the mode boundaries. For a point x̃ located r away from xi, i.e., ∥x̃ − xi∥2 = r, we derive
∥∇d(x̃)/d(x̃)∥2 = 1/(4σ − r). As r approaches 4σ, the sharp increase in ∥∇d(x)/d(x)∥2 indicates that
particles near these regions experience disproportionately large updates. This disrupts the equilibrium
established during the fitting phase, pushing particles away from the boundaries. Please refer to appendix G
for a visualization of the discriminator gradient field in this scenario. As a result, generated samples begin to
concentrate around fewer modes, reducing diversity and triggering mode collapse. Monitoring ∥∇d(x)/d(x)∥2
provides a clear signal of this transition, motivating the early stopping algorithm proposed in section 4.3 to
prevent mode collapse and preserve sample diversity.

The role of discriminator gradients during the collapse phase. Near mode boundaries, discrimina-
tor gradients ∥∇d(x)/d(x)∥2 increase sharply, causing large particle updates that disrupt balance and push
particles away from the boundaries. This behavior results in generated samples concentrating around fewer
modes, thereby reducing diversity and triggering mode collapse.

4.2 A Local Analysis of Steepness

The steepness of the generator is a crucial metric for understanding its mapping behavior, particularly
during the collapse phase of GAN training. A significant drop in steepness often signals mode collapse,

10



Published in Transactions on Machine Learning Research (03/2025)

where generated samples lose diversity and concentrate around fewer modes. By studying steepness, we gain
insights into how updates to the generator affect its ability to maintain diverse outputs. This motivates the
need for a rigorous analysis of steepness dynamics and its connection to discriminator gradients, which is
the focus of this subsection.

The discriminator gradients and the generator gradients are intrinsically connected through the particle
update rule described in algorithm 1. This relationship, which governs how updates to particles propagate
through the generator, is formally captured in theorem 4.1.
Theorem 4.1 (Relationship between discriminator gradients and generator gradients). Following the nota-
tions in algorithm 1, assume that after the update step, the generator is optimal in the sense that gθ′(zi) = Ẑi.
Further assume there are infinitely many particles and that the step size s > 0 is sufficiently small. Then,
the Jacobian Jgθ′ (z) of the updated generator gθ′ satisfies

Jgθ′ (z) = Jgθ
(z) + s · ∇x

(∇dω

dω

)(
gθ(z)

)
· Jgθ

(z), (14)

where ∇x(∇dω/dω)(x) is the Jacobian of the vector field ∇dω/dω evaluated at x.

Building on this relationship, we focus on a local analysis of the generator’s steepness near the collapsing
mode. Specifically, we analyze how the steepness evolves after a single update during the collapse phase
in theorem 4.2.
Theorem 4.2 (Steepness drops in the collapse phase). Assume that the real data distribution pdata(x)
satisfies assumption 2.1 with separation condition parameter ∆ = 8σ. Suppose the current generator is
gθ, and the current discriminator d(x) satisfies the linear model assumption 4.1 near a certain mode xi,
specifically d(x) = 1/2 − ∥x − xi∥2/(8σ) for all x ∈ B4σ(xi). Under the same conditions as in theorem 4.1,
the steepness of the updated generator gθ′ satisfies

Sgθ′ (z) ≤
(

1 − s

(4σ − r)2

)
· Sgθ

(z), (15)

for all latent vectors z such that gθ(z) ∈ B2σ(xi), where r = ∥gθ(z) − xi∥2, provided that the step size
s < (4σ − r)2 is sufficiently small.

Theorem 4.2 reveal that steepness decreases significantly within the mode’s surrounding neighborhood,
reducing the generator’s ability to separate latent points and maintain output diversity. This provides a
clear signal for detecting the onset of mode collapse. Since detecting the distance to the mode center is often
impractical, the proportional drop in steepness offers a viable alternative for identifying mode collapse. By
focusing on the relative change in steepness, we simplify detection and reduce dependence on precise spatial
measurements, as proposed in section 4.3.

The role of steepness during the collapse phase. Steepness decreases near collapsing modes, signaling
reduced capacity to separate latent points. Monitoring proportional drops in steepness provides a practical
method for detecting mode collapse.

4.3 The Early Stopping Algorithm

Based on the theoretical results, we propose an early stopping algorithm to stop GAN training before
collapse occurs. This algorithm monitors two critical metrics: the discriminator gradient ∥∇d(x)/d(x)∥2,
which signals large updates near mode boundaries, and the generator steepness Sg(x), which reflects the
generator’s ability to map latent vectors diversely. Training is terminated if either the discriminator gradient
exceeds a predefined threshold or the generator steepness exhibits a significant proportional drop compared
to its previous value. Please refer to algorithm 2 for the pseudocode.

The algorithm involves three key ingredients. (i) Two thresholds are introduced: kd/(2σ) for the discriminator
gradient and kg for the generator steepness. The value of ∥∇d(x)/d(x)∥2 at x located 2σ away from certain
mode accounts for the 1/(2σ), while kd is set proportional to the distance between adjacent modes. The

11



Published in Transactions on Machine Learning Research (03/2025)

underlying rationale is that when ∥∇d(x)/d(x)∥2 is small relative to inter-mode distances, generated samples
deviating from the modes can be re-attracted. However, as ∥∇d(x)/d(x)∥2 approaches inter-mode distances,
particles gravitate toward alternate modes, risking collapse. The other threshold kg detects proportional
drops in generator steepness, defined as ∆Sg = (Scurrent

g − Sprev
g )/Sprev

g . (ii) The (1 − 1/m)th quantile of
∥∇d(x)/d(x)∥2 is computed for each batch, where m represents the number of modes. This choice presumes
that once a specific mode begins to collapse, it signifies the start of the GAN transitioning into the collapse
phase. (iii) A warm-up period of Nw iterations prevents premature stopping during the fitting phase by
ignoring initial metric fluctuations.

Algorithm 2 Early Stopping of GANs (with Discriminator Gradient and Generator Steepness)
Require: A GAN model including a generator gθ and a discriminator dω, thresholds kd > 0 and kg < 0,

the number of modes m ≥ 1, the number of warm-up iterations Nw

1: for each training iteration do
2: Train the discriminator dω and the generator gθ as in algorithm 1.
3: Compute the (1 − 1/m)th quantile of ∥∇dω/dω∥2 for the current batch. Let this value be qd.
4: Compute the mean steepness Scurrent

g across the batch and calculate the proportional drop compared
to the previous iteration as ∆Sg = (Scurrent

g − Sprev
g )/Sprev

g .
5: if (qs > ks/(2σ) or ∆Sg < kg) and current iteration > Nw then
6: break
7: end if
8: Update Sprev

g = Scurrent
g .

9: end for
10: return The best-performing model from earlier checkpoints.

We also discuss the feasibility of the number of modes m and estimation of the generator’s steepness. In
practice, many datasets used in GAN training (e.g., MNIST, Fashion MNIST, CIFAR-10) have well-defined
modes corresponding to distinct classes or clusters in the data distribution. For such datasets, the number of
modes is typically known or can be reasonably estimated. In cases where the number of modes is unknown,
clustering techniques (e.g., k-means or Gaussian Mixture Models) can provide a practical approximation
of the mode count. While these methods may not always yield perfect accuracy, they offer a reasonable
baseline for implementing algorithm 2 in more general scenarios. As for the steepness, it can be computed
using automatic differentiation tools in modern deep learning frameworks. Although the computation may be
resource-intensive, it is feasible for low-dimensional noise spaces or in settings with moderate computational
budgets. For more efficient estimation, one could subsample the noise space or use stochastic approximation
techniques to estimate steepness over a representative subset of noise vectors.

5 Related Work

In this section, we highlight two key aspects of related work: (i) the phenomenon of final-stage mode collapse
in GAN training (Brock et al., 2019), and (ii) related concepts with generator steepness (Odena et al., 2018;
Tanielian et al., 2020; Salmona et al., 2022). We position our work within these contexts and emphasize its
contributions. For a more comprehensive review, please refer to appendix A.

Final-stage mode collapse. The phenomenon of mode collapse in the final training stages has been
observed when scaling up GAN architectures, as documented in (Brock et al., 2019). Their work, which fo-
cuses on large-scale experiments using BigGAN architectures on high-resolution datasets, notes that “settings
which were stable in previous works become unstable when applied at scale.” Our study complements these
findings by demonstrating that similar phenomena can occur in NSGAN at relatively smaller scales. Addi-
tionally, our analysis adopts a different perspective by focusing on the generator’s overall steepness and the
L2-norm of the discriminator gradients ∇d(x)/d(x), providing a complementary angle to the layer-specific
singular value analysis employed in BigGAN. Importantly, while Brock et al. (2019) primarily focuses on
stabilizing large-scale GAN training to improve performance, our work emphasizes detecting mode collapse
through quantitative metrics.

12



Published in Transactions on Machine Learning Research (03/2025)

Related concepts with steepness. As for the notion of steepness, several related concepts have been
examined, namely, the condition number of the generator’s Jacobian (Odena et al., 2018) (i.e., the ratio
of its largest to smallest singular value), and the global Lipschitz constant (Tanielian et al., 2020; Salmona
et al., 2022) (which may be seen as the global supremum of steepness). Among these, Odena et al. (2018)
introduced the condition number to assess the generator’s conditioning and proposed Jacobian Clamping to
stabilize training. While their work focuses on regularization techniques and overall performance, it does
not explicitly address mode mixture or collapse. Conversely, our work uses steepness as a theoretical tool
to quantify mode mixture and identify its decline as an indicator of mode collapse. Regarding the global
Lipschitz constant, Tanielian et al. (2020) and Salmona et al. (2022) have provided valuable insights into
its role in capturing multimodal distributions. Tanielian et al. (2020) derived an upper bound on precision
for learning disconnected manifolds and proposed a Jacobian-based truncation method to reject off-manifold
samples. Salmona et al. (2022) demonstrated that a high Lipschitz constant is necessary to capture well-
separated modes and provided bounds for two-modal distributions. Our work complements these studies
by deriving a lower bound for multi-modal distributions. In terms of technical details, our work differs in
three key aspects: (i) we employ the density transformation formula as a central tool, directly linking the
generator’s push-forward density to the noise distribution, whereas Tanielian et al. (2020); Salmona et al.
(2022) rely on the Gaussian isoperimetric inequality to analyze divergence measures; (ii) we analyze the
evolution of steepness during training (theorem 3.3), combined with the quantitative relationship between
steepness and mode mixture severity (theorem 3.4), we establish that mode mixture severity decreases
over time. In contrast, Tanielian et al. (2020); Salmona et al. (2022) assume a static generator with a
fixed Lipschitz constant, focusing on theoretical guarantees under this assumption; and (iii) we adopt a
localized approach by leveraging steepness to analyze mode dynamics in specific regions of the data space.
While Tanielian et al. (2020) follow a similar spirit in their rejection method for identifying and filtering
out potentially mode mixture samples, our perspective allows us to observe how steepness declines near
individual modes during collapse, offering complementary insights into the dynamics of mode collapse.

6 Experiments

In this section, we present the experimental results. All codes are provided in the supplementary material.

6.1 Verifying Fitting

We empirically verify the existence of the fitting phase in real-world datasets. Our experiments focus on
MNIST and Fashion MNIST due to the clear separability of their modes. Detailed results, including those for
Fashion MNIST, are provided in appendix G, with experimental settings and rationale detailed in appendix F.

Methodology. We train NSGAN on MNIST and analyze the generated images using a classification
network q(x). Here, x is an image tensor, and q(x) outputs a 10-dimensional vector (p0, p1, . . . , p9), where
pi ∈ [0, 1] represents the likelihood of x being classified as digit i. For each batch, we count the pairs (i, j)
where both pi and pj exceed 10−2. Such occurrences, visualized in heatmaps in fig. 4, indicate that the
corresponding image exhibits characteristics of both modes i and j, which we interpret as mode mixture.

Results. At the beginning of training, the heatmap shows few nonzero entries, primarily due to the initial
noise prior, which generates similar outputs across samples. As training progresses, more entries appear,
reflecting the fitting phase, where generated samples spread to cover the space containing the modes. Off-
diagonal entries, which indicate mode mixture, initially increase but then decrease in magnitude as the
generator reduces overlap between modes. However, mode mixture persists even at the end of the fitting
phase. These observations align with the theoretical analysis in section 3. This trend is closely linked to
the behavior of the discriminator gradient and steepness, as shown in fig. 5. At the stage when more entries
appear in the heatmap, the discriminator gradient’s magnitude remains relatively small, while its steepness
increases rapidly. This corresponds to the beginning of training, where the generator increases steepness to
distribute samples across the space and capture more modes. As training continues and off-diagonal entries
begin to decrease in magnitude, the steepness stabilizes, and the discriminator gradient starts to oscillate.
The stabilization reflects the generator’s ability to better separate modes, leading to a reduction in mode

13



Published in Transactions on Machine Learning Research (03/2025)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

4
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8
0 2 4 6 8

0

2

4

6

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4: The logarithm of the occurrence of pairings (i, j) plus 1 in a batch of size 256. Epochs from left
to right: 0, 1, 2, 4, 8. At initialization, the noise prior results in few nonzero entries. As training progresses,
more entries appear, indicating that generated samples spread across the mode space. Off-diagonal entries
signal mode mixture, which decreases over time, validating the fitting. However, mode mixture persists even
after fitting. Annotated heatmaps can be found in appendix G.

mixture. At the same time, the discriminator becomes increasingly effective at distinguishing samples and
providing gradients that align with the assumptions in assumption 4.1.

6.2 Early Stopping

We present the results of applying early stopping (algorithm 2) to 3-dimensional Gaussian mixture, MNIST,
Fashion MNIST, and CIFAR-10. Detailed experimental settings are provided in appendix F.

Early stopping. We train NSGAN on each dataset and record ∥∇d(x)/d(x)∥2 at each epoch until reach-
ing the maximum specified epochs. The thresholds for early stopping are determined by kd/(2σ) for the
discriminator gradient and kg = −0.5 for the generator steepness, where kd represents the estimated distance
between two modes and σ is the estimated standard deviation of the data distribution. To evaluate the ef-
fectiveness of early stopping, we continue training beyond the stopping point to observe the sample quality
both before and after this threshold is crossed. The experimental results are shown in fig. 5, which are shown
at intervals of a few epochs before and after early stopping. These intervals reflect the common practice of
periodically saving model checkpoints. However, the intervals were determined post-hoc by visually identify-
ing the collapse point, so they may not be evenly spaced. Before the stopping point, the generated samples
remain diverse and realistic. In the cases of MNIST and CIFAR-10, our algorithm effectively detects the
epochs immediately preceding collapse. While the threshold may not always pinpoint the exact moment of
collapse in other scenarios, it consistently ensures high-quality samples are retained before collapse occurs.
Beyond this stopping point, however, the samples frequently collapse into a limited number of modes or
oscillate between modes, leading to a significant loss in diversity and quality.

Comparison with FID score and duality gaps. In the evaluation of GAN performance, the metrics
used can generally be classified into two categories: domain-specific and domain-agnostic. To comprehen-
sively assess our proposed approach, we selected the FID score (Heusel et al., 2017) as a representative of
domain-specific metrics, focusing on the quality of the generated images, and duality gaps (Grnarova et al.,
2019; Sidheekh et al., 2021) to represent domain-agnostic metrics that evaluate the optimization process.
We compare our proposed metric with the FID score across three key aspects. (i) In terms of applicability
during training, the FID score is frequently used for retrospective evaluation, where generator checkpoints
are saved periodically, and the FID score is calculated post hoc. This approach typically involves generating
a large number of samples (e.g., 10k or more) and feeding them through a pretrained Inception network,
making it computationally intensive. In contrast, our algorithm is designed to integrate directly into the
training process, and is relatively computationally efficient (requiring batch-level gradient computations for
both the generator and the discriminator, which is comparable to standard GAN training). Moreover, the
use of early stopping with our metrics can reduce the number of checkpoint saving, providing a practical
advantage in resource-intensive training scenarios. (ii) In terms of sensitivity to mode collapse, in fig. 6, we
show that our metric, steepness, is closely aligned with FID in detecting mode collapse. Specifically, steep-
ness exhibits a sharp decline during collapse phases, corresponding to a rapid increase in FID scores. Both

14



Published in Transactions on Machine Learning Research (03/2025)

0 100 200 300 400
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

||
d(

x)
/d

(x
)||

2
×101

87.5% Percentile of || d(x)/d(x)||2
Stop epoch 131: Threshold exceeded
Steepness

0

1

2

3

4

5

St
ee

pn
es

s

0 10 20 30 40 50
Epochs

0

1

2

3

4

5

||
d(

x)
/d

(x
)||

2

×102

90% Percentile of || d(x)/d(x)||2
Stop epoch 46: Steepness drop
Steepness

0

1

2

3

4

St
ee

pn
es

s

×102

0 25 50 75 100 125
Epochs

0

1

2

3

4

5

||
d(

x)
/d

(x
)||

2

×103

90% Percentile of || d(x)/d(x)||2
Stop epoch 99: Threshold exceeded
Steepness

0.0

0.2

0.4

0.6

0.8

1.0

St
ee

pn
es

s

×103

0 25 50 75 100 125
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

||
d(

x)
/d

(x
)||

2

×103

90% Percentile of || d(x)/d(x)||2
Stop epoch 122: Steepness drop
Steepness

0.0

0.5

1.0

1.5

2.0

St
ee

pn
es

s

×103

Figure 5: Experimental results of early stopping. Each column, from left to right, represents results for the
following datasets: Gaussian Mixture, MNIST, Fashion MNIST, and CIFAR-10. In the first row, the blue
circled lines indicate ∥∇d(x)/d(x)∥2, while the light blue diamond-shaped lines represent the steepness. The
stopping epoch is indicated by the black vertical line. In the second row, generated images are shown at
intervals of a few epochs before and after early stopping, reflecting the common practice of saving model
checkpoints periodically. Images highlighted with red frames correspond to the most realistic samples among
those saved before the stopping point. Additionally, the final samples generated just prior to the early
stopping trigger are included: 130th epoch for Gaussian Mixture, 45th epoch for MNIST, 98th epoch for
Fashion MNIST, and 121th epoch for CIFAR-10. For Gaussian Mixture and MNIST (white dots appear
along the edges of the images), these generated samples show turbulence. For Fashion MNIST and CIFAR-
10, the generated samples remain diverse and realistic before early stopping, without noticeable quality
deterioration. Notably, in the MNIST and CIFAR-10 cases, our algorithm accurately identifies the epoch
just before collapse. In other cases, while the threshold may not always precisely pinpoint the exact collapse
point, it reliably ensures that samples remain of high quality prior to collapse. Beyond the stopping point,
however, the samples often collapse to a few modes or oscillate between modes, significantly reducing diversity
and quality.

metrics effectively signal this transition. (iii) In terms of training dynamics, our metric provides insights that
complement the FID score. Notably, steepness increases during the early epochs of training, corresponding
to the phase where FID decreases most rapidly. This behavior may reflect the transition from prior noise
to the modes of the real data distribution. Steepness then stabilizes and oscillates, which corresponds to
the FID score slowly decreasing. This reflects the particles moving closer to the modes and improving the
sample quality gradually. Toward the later stages of training, steepness begins to decline sharply, signaling
mode collapse, which coincides with a rapid increase in the FID score. In summary, while FID remains
a widely used and effective domain-specific measure for assessing GAN performance, our metric provides
a reliable and complementary perspective. It is computationally efficient, sensitive to collapse phases, and
offers interpretability during the training process, making it a practical tool for real-time training monitoring
and intervention. Additionally, in appendix G, we compare ∥∇d(x)/d(x)∥2 with the FID score, both metrics
with the duality gaps and present the GAN training losses.

Validating the early stopping metric. As a by-product, our discussion in section 4 supports the es-
tablished practice of adding noise to the discriminator to stabilize GAN training (Wieluch & Schwenker,
2019). This stabilization mitigates disproportionately large ∥∇d(x)/d(x)∥2 values near mode boundaries
which contributes to mode collapse. Conversely, observing ∥∇d(x)/d(x)∥2 in this noised setting validates
the effectiveness of our metric. Specifically, prior to the 54th epoch, the noise-free model generally exhibits
larger values compared to the noised model. At the end of the 54th epoch, the noise-free model collapses,
with the value tending toward zero. Meanwhile, the noised model maintains stable values, as shown in fig. 7.
As a remark, the apparent concentration of density on the left side of the histogram at the 54th epoch is due

15



Published in Transactions on Machine Learning Research (03/2025)

0 10 20 30 40 50
Epochs

0

1

2

3

4

St
ee

pn
es

s
×102

Steepness
Stop epoch 46: Steepness drop
FID score

0

1

2

3

4

5

6

7

FI
D 

sc
or

e

×102

0 25 50 75 100 125
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

St
ee

pn
es

s

×103

Steepness
Stop epoch 99: Threshold exceeded
FID score

0

1

2

3

4

5

6

FI
D 

sc
or

e

×102

0 25 50 75 100 125
Epochs

0.0

0.5

1.0

1.5

2.0

St
ee

pn
es

s

×103

Steepness
Stop epoch 122: Steepness drop
FID score

0

1

2

3

4

5

FI
D 

sc
or

e

×102

Figure 6: The tendency of steepness and FID score for MNIST, Fashion MNIST and CIFAR-10, from
left to right. Light blue diamond-shaped for the steepness and red square-shaped for the FID score. A
consistent pattern is observed: the steepness initially increases and stabilizes. Subsequently, whenever the
steepness decreases significantly, the FID score nearly concurrently escalate to high values, signifying a
notable deterioration in sample quality. Please refer to appendix G for comparison between ∥∇d(x)/d(x)∥2
and the FID score.

to the logarithmic scale of the x-axis, which compresses the right tail where outliers are located. Although
these outliers are visually negligible, they correspond to large ∥∇d(x)/d(x)∥2 values and account for 10% of
the total area beyond the 90th percentile. See appendix G for additional results.

1004 101 102 10314 101 102 103 10424 101 102 10334 10 1 100 101 10244 101 102 103 10454

Figure 7: Histograms of the values of ∥∇d(x)/d(x)∥2 and their 90th percentile across epochs. Red for the
model with noise and blue for the model without noise. The noise-free GAN collapses at the 54th epoch.
Preceding that, the noised model nearly always exhibits lower ∥∇d(x)/d(x)∥2 values compared to its noise-
free counterpart. Post that, this relationship reverses. Notably, in the noise-free model, ∥∇d(x)/d(x)∥2
tends towards zero, contributing to this observed divergence. See appendix G for additional results.

7 Conclusion

In this work, we propose a perspective that views GAN training as a two-phase progression from fitting to
collapse, where mode mixture and mode collapse are treated as interconnected phenomena. We demonstrated
that mode collapse can emerge in the later stages of a converging GAN and emphasized the importance of
early stopping to retain sample diversity and quality. Using gradient dynamics, we analyzed how the discrim-
inator gradient guides the movement of particles (generated samples) towards modes, while the generator
gradient quantifies the severity of mode mixture by measuring how closely the generator maps nearby points
in the latent space to distinct points in the output space. These insights allowed us to track the evolution of
generated samples across the two phases. Our findings, validated through synthetic and real-world datasets,
challenge conventional views on mode collapse and lay the groundwork for future research into improving
GAN training stability and performance. For additional discussions, please refer to appendix J.

Acknowledgements

We thank Luo Luo for his valuable suggestions. We also appreciate the anonymous reviewers for their
constructive feedback, which significantly contributed to the revision process. We are grateful to Fernando
Perez-Cruz and Michael U. Gutmann for handling our submissions and for the editorial guidance. This
research was supported by the National Key R&D Program of China under grant 2020YFA0711902.

16



Published in Transactions on Machine Learning Research (03/2025)

References
Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng Gu. AE-OT: A new

generative model based on extended semi-discrete optimal transport. In International Conference on
Learning Representations, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Evan Becker, Parthe Pandit, Sundeep Rangan, and Alyson Fletcher. Instability and local minima in GAN
training with kernel discriminators. In Advances in Neural Information Processing Systems, 2022.

Giulio Biroli, Tony Bonnaire, Valentin de Bortoli, and Marc Mézard. Dynamical regimes of diffusion models.
arXiv preprint arXiv:2402.18491, 2024.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invertible
generative modeling. In Advances in Neural Information Processing Systems, 2019.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. Variational lossy autoencoder. In International Conference on Learning Representa-
tions, 2017.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on images. In
International Conference on Learning Representations, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In International
Conference on Learning Representations, 2017.

Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge University Press, 2019.

Jean-Yves Franceschi, Emmanuel De Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, and Patrick
Gallinari. A neural tangent kernel perspective of GANs. In International Conference on Machine Learning,
2022.

Jean-Yves Franceschi, Mike Gartrell, Ludovic Dos Santos, Thibaut Issenhuth, Emmanuel de Bezenac, Mickael
Chen, and Alain Rakotomamonjy. Unifying GANs and score-based diffusion as generative particle models.
In Advances in Neural Information Processing Systems, 2023.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based models
by diffusion recovery likelihood. In International Conference on Learning Representations, 2021.

Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, and Shunkang Zhang. Deep generative learning
via variational gradient flow. In International Conference on Machine Learning, 2019.

Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K Dokania. Multi-agent
diverse generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

Ziv Goldfeld, Kristjan Greenewald, and Kengo Kato. Asymptotic guarantees for generative modeling based
on the smooth Wasserstein distance. In Advances in Neural Information Processing Systems, 2020.

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160,
2017.

17



Published in Transactions on Machine Learning Research (03/2025)

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, 2014.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible generative
models with free-form continuous dynamics. In International Conference on Learning Representations,
2019.

Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Nathanael Perraudin, Ian Goodfellow, Thomas Hofmann,
and Andreas Krause. A domain agnostic measure for monitoring and evaluating GANs. In Advances in
Neural Information Processing Systems, 2019.

Xianfeng Gu, Na Lei, and Shing-Tung Yau. Optimal transport for generative models. In Handbook of
Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision,
pp. 1–48. Springer, 2021.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of Wasserstein GANs. In Advances in Neural Information Processing Systems, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. Advances in Neural Infor-
mation Processing Systems, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, 2020.

Yu-Jui Huang and Yuchong Zhang. GANs as gradient flows that converge. Journal of Machine Learning
Research, 24(217):1–40, 2023.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, 2015.

Rie Johnson and Tong Zhang. A framework of composite functional gradient methods for generative adver-
sarial models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1):17–32, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. In Advances in Neural Information Processing Systems,
2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1imes1 convolutions. In
Advances in Neural Information Processing Systems, 2018.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International Conference on Machine Learning, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Na Lei, Yang Guo, Dongsheng An, Xin Qi, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng Gu. Mode
collapse and regularity of optimal transportation maps. arXiv preprint arXiv:1902.02934, 2019.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. MMD GAN: Towards
deeper understanding of moment matching network. In Advances in Neural Information Processing Sys-
tems, 2017.

18



Published in Transactions on Machine Learning Research (03/2025)

Marvin Li and Sitan Chen. Critical windows: Non-asymptotic theory for feature emergence in diffusion
models. arXiv preprint arXiv:2403.01633, 2024.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. PACGAN: The power of two samples in generative
adversarial networks. In Advances in Neural Information Processing Systems, 2018.

Yixin Luo and Zhouwang Yang. DynGAN: Solving mode collapse in GANs with dynamic clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision,
2017.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for gener-
ative adversarial networks. In International Conference on Learning Representations, 2018.

Tu Nguyen, Trung Le, Hung Vu, and Dinh Phung. Dual discriminator generative adversarial nets. In
Advances in Neural Information Processing Systems, 2017.

Albert No, TaeHo Yoon, Kwon Sehyun, and Ernest K Ryu. WGAN with an infinitely wide generator has no
spurious stationary points. In International Conference on Machine Learning, 2021.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems, 2016.

Augustus Odena, Jacob Buckman, Catherine Olsson, Tom Brown, Christopher Olah, Colin Raffel, and Ian
Goodfellow. Is generator conditioning causally related to GAN performance? In International Conference
on Machine Learning, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. In International Conference on Learning Representations, 2016.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with VQ-VAE-2.
In Advances in Neural Information Processing Systems, 2019.

Antoine Salmona, Valentin De Bortoli, Julie Delon, and Agnes Desolneux. Can push-forward generative
models fit multimodal distributions? In Advances in Neural Information Processing Systems, 2022.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58–63):94, 2015.

Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion models reveals
the hierarchical nature of data. arXiv preprint arXiv:2402.16991, 2024.

Sahil Sidheekh, Aroof Aimen, Vineet Madan, and Narayanan C Krishnan. On duality gap as a measure for
monitoring GAN training. In International Joint Conference on Neural Networks, 2021.

Vaidotas Simkus and Michael U. Gutmann. Improving variational autoencoder estimation from incomplete
data with mixture variational families. Transactions on Machine Learning Research, 2024, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

Akash Srivastava, Kai Xu, Michael U. Gutmann, and Charles Sutton. Generative ratio matching networks.
In International Conference on Learning Representations, 2018.

Jesse Sun, Dihong Jiang, and Yaoliang Yu. Conditional generative quantile networks via optimal transport.
In ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022.

19



Published in Transactions on Machine Learning Research (03/2025)

Ruoyu Sun, Tiantian Fang, and Alexander Schwing. Towards a better global loss landscape of GANs. In
Advances in Neural Information Processing Systems, 2020.

Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and Jeremie Mary. Learning disconnected manifolds:
A no GAN’s land. In International Conference on Machine Learning, 2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with PixelCNN decoders. In Advances in Neural Information Processing Systems, 2016.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International Conference on Machine Learning, 2016.

Sabine Wieluch and Friedhelm Schwenker. Dropout induced noise for co-creative GAN systems. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of descriptor
and generator networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1):27–45,
2018.

Yunfei Yang, Zhen Li, and Yang Wang. On the capacity of deep generative networks for approximating
distributions. Neural Networks, 145:144–154, 2022.

Mingxuan Yi, Zhanxing Zhu, and Song Liu. MonoFlow: Rethinking divergence GANs via the perspective
of Wasserstein gradient flows. In International Conference on Machine Learning, 2023.

20



Published in Transactions on Machine Learning Research (03/2025)

Roadmap. The appendix is organized as follows:

• Appendix A presents a comprehensive review of the literature, covering generative models, practical
considerations and theoretical understandings of GANs, the relationship between GANs and particle
models, and phased processes in diffusion models.

• Appendix B explains the rationale behind the choice of the latent dimension in assumption 2.2.

• Appendix C provides proofs for all the theorems, propositions, and additional theoretical results not
included in the main text, which include

– Equivalence of NSGAN with its particle model interpretation (appendix C.1)
– Properties of particle update dynamics — the general result (appendix C.2)
– Properties of particle update dynamics — the data-dependent results (appendix C.3)
– Characterization of measuring-preserving maps (appendix C.4)
– Steepness of measure-preserving map in 1-dimension (appendix C.5)
– Steepness of measure-preserving maps in higher dimensions (appendix C.6)
– Evolution of steepness (appendix C.7)
– Quantitative results on how steepness impacts the severity of mode mixture (appendix C.8)
– Local analysis of steepness at collapse (appendix C.9)

• Appendix D explores a class of suboptimal discriminators, complementing the theory of their optimal
counterparts.

• Appendix E visualizes the distances between modes in datasets such as MNIST, Fashion MNIST,
and CIFAR-10.

• Appendix F outlines the detailed settings for the experiments described in section 6.

• Appendix G presents additional experimental results, including the behavior of the discriminator at
the collapse phase, verification of the fitting phase, a comparison with duality gaps, GAN training
losses, and an evaluation of the effectiveness of the early stopping metric after applying techniques
to mitigate mode collapse.

• Appendix H discusses how the analyses in this work can be extended to other divergence GANs.

• Appendix I provides visualizations of generator functions under different settings to offer intuition
for section 3.2.

• Appendix J shares additional intuitions and implications.

A Additional Literature Review

In this section, we provide a detailed literature review.

Generative models. Learning the generative model based on large amounts of data is a fundamental
task in machine learning and statistics. Popular techniques include Variational Autoencoders (Kingma &
Welling, 2014; Chen et al., 2017; Razavi et al., 2019; Child, 2021; Simkus & Gutmann, 2024), Generative
Adversarial Networks (Goodfellow et al., 2014; Radford et al., 2016; Arjovsky et al., 2017; Gulrajani et al.,
2017; Nguyen et al., 2017; Ghosh et al., 2018; Lin et al., 2018; Brock et al., 2019; Karras et al., 2020),
flow-based generative models (Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2019; Grathwohl
et al., 2019), autoregressive models (Van den Oord et al., 2016; Van Den Oord et al., 2016), energy-based
models (Xie et al., 2018; Gao et al., 2021), diffusion models (Ho et al., 2020; Song et al., 2021; Karras et al.,
2022), and other variants (Srivastava et al., 2018; Sun et al., 2022). Among these models, GANs’ ability for
rapid sampling, unsupervised feature learning and broad applicability makes them the primary focus of this
study.

21



Published in Transactions on Machine Learning Research (03/2025)

Practical considerations of GANs. In the realm of GANs, mode collapse (Goodfellow, 2017) is ar-
guably one of the major challenges which has received a lot of attention. It refers to the situation where the
generator produces samples on only a few modes instead of the entire data distribution. The issue of mode
collapse has been addressed mainly from three perspectives: modifying the network architecture, designing
new objective functions and using normalization techniques. Regarding the network architecture, existing
approaches involve increasing the number of generator (Ghosh et al., 2018) or discriminator (Nguyen et al.,
2017), using joint architectures (Larsen et al., 2016). From the objective function side, various metrics
such as the Wasserstein distance (Arjovsky et al., 2017), f -divergence (Nowozin et al., 2016), least squares
distance (Mao et al., 2017), maximum mean discrepancy (Li et al., 2017) are employed. Normalization tech-
niques such as batch normalization (Ioffe & Szegedy, 2015), layer normalization (Ba et al., 2016) and spectral
normalization (Miyato et al., 2018) have also achieved superb empirical performance. Mode mixture (Lei
et al., 2019) is another troublesome phenomenon in which the generated samples fall outside the real dis-
tribution and are thus unrealistic. Existing approaches include picking generated samples using a rejection
sampling method (Tanielian et al., 2020), or generating samples with discontinuous optimal transport rather
than deep neural networks (Lei et al., 2019; An et al., 2020; Gu et al., 2021).

Theoretical understandings of GANs. Another line of research approaches mode collapse and mode
mixture by developing theoretical understandings for better analyzing and optimizing GAN training. These
researches fall into two categories: landscape analysis and dynamic analysis. Landscape analysis is static
because it examines the results of GAN training; it ignores the interaction between the discriminator and
generator during training. For instance, Sun et al. (2020) analyzed the landscape of a family of GANs called
separable-GAN. They proved that the landscape of separable-GAN has exponentially many bad basins, all of
which are deemed as mode-collapse. No et al. (2021) demonstrated that Wasserstein GAN with an infinitely
broad generator has no spurious stationary points by modeling both the generator and the discriminator
using random feature theory. Lei et al. (2019) used results from optimal transport theory to account for
mode mixture. Dynamic analysis, on the other hand, considers how the discriminator and generator interact.
Franceschi et al. (2022) considered GANs from the perspective of Neural Tangent Kernel (NTK). Becker
et al. (2022) suggested the “Isolated Points Model” to explain the causes of GANs’ instability. Another
dynamical way of modeling GANs is to regard it as a particle model (Huang & Zhang, 2023; Franceschi
et al., 2023). This kind of modeling is used in conjunction with Fokker–Planck equation theories by Huang
& Zhang (2023) to demonstrate the convergence of GANs to the global stationary point.

Relationship between GANs and particle models. There has been an emerging trend in recent years
to conceptualize GANs as particle models. We present the interpretation of NSGAN as a particle model
in algorithm 1, which is fundamentally grounded in the work of Yi et al. (2023). Their framework rethinks
Divergence GANs from the perspective of differential equations, interpreting the evolution of generated
samples as particle flows guided by vector fields derived from the discriminator’s gradients. Huang & Zhang
(2023) examined a similar interpretation of vanilla GAN, but did not specifically discuss NSGAN. Gao et al.
(2019) used a variational gradient flow approach to analyze GANs, without placing much emphasis on the
connection to particle models. Franceschi et al. (2023) unified GANs within the context of particle models
and interpreted GANs as “interactive particle models.”

Phased processes in diffusion models. Recently, analogous phase transition phenomena, akin to those
elucidated in our paper, have been uncovered in diffusion models. For example, Biroli et al. (2024) showed
that the generative process in diffusion models undergoes a “speciation” transition, revealing data structure
from noise, followed by a “collapse” transition, converging dynamics to memorized data points, akin to
condensation in a glass phase. Sclocchi et al. (2024) found that the backward diffusion process acting after
a time t is governed by a phase transition at some threshold time, where the probability of reconstructing
high-level features suddenly drops and the reconstruction of low-level features evolves smoothly across the
whole diffusion process. Li & Chen (2024) studied properties of critical windows that are are narrow time
intervals in sampling during which particular features of the final image emerge.

22



Published in Transactions on Machine Learning Research (03/2025)

B Choice of Latent Dimension

In this section, we provide the rationale behind our choice of the latent dimension in assumption 2.2. At the
population level, Yi et al. (2023) demonstrated that NSGAN minimizes the f -divergence Df (pdata∥pg) with

f(u) = −(u + 1) log u

u + 1 + u(1 − 2 log 2) − 1. (16)

Let µ and ν be mutually singular measures on Rn, Yang et al. (2022) proved that

Df (µ∥ν) = f(0) + f∗(0) > 0, (17)

where f∗ stands for the Fenchel conjugate of f . If the latent dimension is less than n, then gθ#pz is
supported on a low-dimensional manifold, so that gθ#pz and ν will be mutually singular. Thus there is
always a positive gap in f -divergence between gθ#pz and ν. In other words, gθ#pz cannot approximate ν
well even if the GAN model has been trained perfectly. To prevent such inherent misalignment, we assume
that the latent dimension always equals n. Combined with the continuous data augmentation of real-world
datasets, we assume that the noise prior pz(z) is an n-dimensional standard Gaussian distribution, denoted
as N (0, In), where n is the dimension of real samples.

C Proofs to Theorems

Here, we aggregate all the theorems presented in the paper and furnish proofs for some of them.

C.1 Equivalence of NSGAN with Its Particle Model Interpretation

Corollary C.1 ((Yi et al., 2023)). The update of gθ via applying the stop gradient operator to Ẑi and
descending the gradient

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2 (18)

in algorithm 1 is equivalent to descending the gradient

−∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
(19)

in the original formulation of NSGAN.

Proof. We prove by directly computing the gradient using the chain rule. In fact, we have

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2 = 2

m

m∑
i=1

∇θgθ(zi)⊤ ·
(
gθ(zi) − Ẑi

)
= − s

m

m∑
i=1

∇θgθ(zi)⊤ · ∇dω(Zi)
dω(Zi)

= −s∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
.

(20)

Note that in the first equation, we implicitly use the fact that ∇θẐi = 0 due to the assumption that the stop
gradient operator is applied to Ẑi.

C.2 Properties of Particle Update Dynamics — The General Result

Theorem C.1. Assume that the discriminator is optimal, i.e., d∗(x) = pdata(x)/(pdata(x) + pg(x)). De-
note r(x) = pdata(x)/pg(x). At a point x where r(x) ≈ 0, x is updated following approximately ∇ log

(
r(x)

)
.

Conversely, when r(x) ≫ 1, x is updated following approximately ∇
(

− 1/r(x)
)
.

23



Published in Transactions on Machine Learning Research (03/2025)

Proof. We rewrite ∇d(x)/d(x) in terms of r(x):

∇d(x)
d(x) = −pdata(x)∇pg(x) + pg(x)∇pdata(x)

(pdata(x) + pg(x))pdata(x)

= ∇
(pdata(x)

pg(x)

)
· pg(x)2

pdata(x)(pdata(x) + pg(x))

= ∇r(x) · 1
r(x)(1 + r(x)) .

(21)

When r(x) ≈ 0, we have
1

r(x)(1 + r(x)) ≈ 1
r(x) . (22)

As a result,
∇d(x)
d(x) ≈ ∇ log r(x). (23)

When r(x) ≫ 1, we have
1

r(x)(1 + r(x)) ≈ 1
r(x)2 . (24)

Consequently,
∇d(x)
d(x) ≈ ∇

(
− 1

r(x)

)
. (25)

We hereby outline the implications of this theorem. The value of log
(
r(x)

)
changes dramatically as x

decreases from 1 to 0, leading to correspondingly large magnitudes of ∥∇ log
(
r(x)

)
∥2 when r(x) ≈ 0. This

indicates that in the regions where pg(x) significantly exceeds pdata(x), particles are propelled towards distant
points. Conversely, ∇

(
− 1/r(x)

)
changes more gradually with increasing x, resulting in smaller magnitudes

of ∥∇
(

− 1/r(x)
)
∥2 when r(x) ≫ 1. In such regions where pg(x) is lower than pdata(x), particles tend to

remain relatively stationary. These align with our observations in section 3.

C.3 Properties of Particle Update Dynamics — The Data-Dependent Results

Proposition C.1. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2) (26)

and that pg ∼ N ([0, 0], 0.2I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given
by

∇r(x) · 1
r(x)(1 + r(x)) , (27)

where
r(x) = 1

2
∑

(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
(28)

and
∇r(x) = −5

2
∑

(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
. (29)

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
. (30)

24



Published in Transactions on Machine Learning Research (03/2025)

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

(31)

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

. (32)

For pg(x) which is normally distributed with mean [0, 0] and covariance 0.2I2, we have

pg(x) = 1
0.4π

· exp
(

− 2.5(x2
1 + x2

2)
)
. (33)

Combining the above results, we have

r(x) = 1
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
. (34)

Next, we compute ∇r(x):

∇r(x) = 1
2

∑
(a,b)∈{(±1,±1)}

∇ exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
. (35)

For each term exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
, its gradient is:

∇ exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
= − 5 exp

(
− 2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

(36)

Thus,

∇r(x) = −5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
. (37)

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) . (38)

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards two times the centers of the four modes, which are (2, 2), (2, −2),
(−2, 2), and (−2, −2). Due to the exponential decay property of the exponential function, the influence of
these vectors diminishes rapidly with distance. Consequently, the vector field is predominantly influenced
by the mode in the same quadrant as x. Specifically, if we assume without loss of generality that x lies in
the first quadrant, the vector field will be approximately [2 − x1, 2 − x2]⊤, up to a scaling factor.

Proposition C.2. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2) (39)

and that pg ∼ U
(
[−2, 2] × [−2, 2]

)
. Let x = [x1, x2]. Then the vector field that governs particles’ update is

given by
∇r(x) · 1

r(x)(1 + r(x)) , (40)

25



Published in Transactions on Machine Learning Research (03/2025)

where
r(x) = 20

π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

· 1x∈[−2,2]×[−2,2] (41)

and
∇r(x) = −200

π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
· 1x∈[−2,2]×[−2,2]. (42)

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
. (43)

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

(44)

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

(45)

For pg(x) which is uniformly distributed, we have

pg(x) = 1
16 · 1x∈[−2,2]×[−2,2]. (46)

Combining the above results,

r(x) = 20
π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

· 1x∈[−2,2]×[−2,2]. (47)

Now, we compute ∇r(x):

∇r(x) = 20
π

∑
(a,b)∈{(±1,±1)}

∇ exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

1x∈[−2,2]×[−2,2]. (48)

For each term exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

, its gradient is:

∇ exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

= −10 exp
(

− 5
(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
. (49)

Thus,

∇r(x) = −200
π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
· 1x∈[−2,2]×[−2,2]. (50)

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) . (51)

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards the centers of the four modes, which are (1, 1), (1, −1), (−1, 1),
and (−1, −1). Due to the exponential decay property of the exponential function, the influence of these
vectors diminishes rapidly with distance. Consequently, the vector field is predominantly influenced by the
mode in the same quadrant as x. Specifically, if we assume without loss of generality that x lies in the first
quadrant, the vector field will be approximately [1 − x1, 1 − x2]⊤, up to a scaling factor.

26



Published in Transactions on Machine Learning Research (03/2025)

Proposition C.3. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2) (52)

and that pg ∼ N ([1, 1], I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given by

∇r(x) · 1
r(x)(1 + r(x)) , (53)

where

r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

(54)

and

∇r(x) = −45
2 ·

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) x1 − 10a − 1

9
x2 − 10b − 1

9

 .

(55)

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
. (56)

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

(57)

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

. (58)

For pg(x) which is normally distributed with mean [1, 1] and covariance I2, we have

pg(x) = 1
2π

· exp
(

− 0.5
(
(x1 − 1)2 + (x2 − 1)2))

. (59)

Combining the above results, we have

r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

. (60)

Next, we compute ∇r(x):

∇r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

∇ exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a−1)2 + 5

9(b−1)2
)

. (61)

For each term on the right-hand side, its gradient is:

∇ exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

= − 9 · exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) [

x1 − (10a − 1)/9
x2 − (10b − 1)/9

]
.

(62)

27



Published in Transactions on Machine Learning Research (03/2025)

Thus,

∇r(x) = −45
2 ·

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) x1 − 10a − 1

9
x2 − 10b − 1

9

 .

(63)
Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) . (64)

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards (1, 1), (−11/9, 1), (1, −11/9), and (−11/9, −11/9), respectively.
Due to the exponential decay property of the exponential function, the influence of these vectors diminishes
rapidly with distance. Consequently, the vector field is predominantly influenced by the mode in the same
quadrant as x. Specifically, if we assume without loss of generality that x lies in the first quadrant, the
vector field will be approximately [1 − x1, 1 − x2]⊤, up to a scaling factor.

Proposition C.4. Assume that

pdata ∼ 1
4N ([3, 3], 0.1I2) + 1

4N ([3, −3], 0.1I2) + 1
4N ([−3, 3], 0.1I2) + 1

4N ([−3, −3], 0.1I2) (65)

and that pg ∼ N ([3, 3], 3I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given by

∇r(x) · 1
r(x)(1 + r(x)) , (66)

where

r(x) = 15
4

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

(67)

and

∇r(x) = −145
4 ·

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) x1 − 30a − 3

29
x2 − 30b − 3

29

 .

(68)

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
. (69)

Here, µ ∈ {[3, 3], [3, −3], [−3, 3], [−3, −3]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

(70)

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±3,±3)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

. (71)

28



Published in Transactions on Machine Learning Research (03/2025)

For pg(x) which is normally distributed with mean [3, 3] and covariance 3I2, we have

pg(x) = 1
6π

· exp
(

− 1
6

(
(x1 − 3)2 + (x2 − 3)2))

. (72)

Combining the above results, we have

r(x) = 15
4

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a−3)2 + 5

29(b−3)2
)

. (73)

Next, we compute ∇r(x):

15
4

∑
(a,b)∈{(±3,±3)}

∇ exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

. (74)

For each term on the right-hand side, its gradient is:

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

=

− 29
3 exp

(
− 29

6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) [

x1 − (30a − 3)/29
x2 − (30b − 3)/29

]
.

(75)
Thus,

∇r(x) = −145
4 ·

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) x1 − 30a − 3

29
x2 − 30b − 3

29

 .

(76)
Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) . (77)

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of
the vectors originating from x and pointing towards (27/29, 27/29), (−33/29, 27/29), (27/29, −33/29),
and (−33/29, −33/29), respectively. Due to the exponential decay property of the exponential function,
the influence of these vectors diminishes rapidly with distance. Consequently, the vector field is predomi-
nantly influenced by the mode in the same quadrant as x. Specifically, if we assume without loss of generality
that x lies in the first quadrant, the vector field will be approximately [27/29 − x1, 27/29 − x2]⊤, up to a
scaling factor. Regarding the term 1 + r(x) in the denominator, we observe that its magnitude is large when
x is far from the coordinates x1 = 0, x2 = 0, and the centers of the modes. This increased magnitude
compared to the scenario in proposition C.3 explains the overall weakening of the attraction intensity near
all the modes.

C.4 Characterization of Measuring-Preserving Maps

Lemma C.1 ((Durrett, 2019)). Let X be a random variable taking values on R and let FX(x) be its CDF.
Then

F −1
X

(
U(0, 1)

)
∼ X (78)

and
FX(X) ∼ U(0, 1), (79)

where U(0, 1) denotes the uniform distribution on (0, 1).

29



Published in Transactions on Machine Learning Research (03/2025)

Theorem C.2. Let Φ(x) denotes the cumulative distribution function (CDF) of N (0, 1) and let Ψ(x) be
that of pdata(x). If g satisfies g#pz = pdata, then g = Ψ−1 ◦ h ◦ Φ, where h is a measure-preserving map
of U(0, 1), i.e., the uniform distribution on (0, 1).

Proof. We only need to show that Ψ◦g ◦Φ−1 is a measure-preserving map of U(0, 1). In fact, by lemma C.1,
we have

(Ψ ◦ g ◦ Φ−1)#U(0, 1) = (Ψ ◦ g)#pz = Ψ#pdata = U(0, 1). (80)

C.5 Steepness of Measure-Preserving Map in 1-Dimension

Theorem C.3. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with n = 1 and
separation condition ∆ = 6σ. Let Φ(x) and Ψ(x) denote the cumulative distribution functions (CDFs) of
N (0, 1) and pdata(x), respectively. Define g(x) := Ψ−1(Φ(x)). Then, there exists a point x∗ ∈ R such that
the steepness of g at x∗ satisfies:

Sg(x∗) ≥ min
1≤i≤N−1

σ · exp
( (xi+1 − xi)2

8σ2

)
· exp(−q2), (81)

where q is the (1 − 1/N)th quantile of the standard Gaussian distribution.

Proof. Instead of computing the derivative of g, we compute that of g−1. By the formula for the derivative
of inverse functions, we have that for any y ∈ R,

(g−1)′(y) = Ψ′(y)
Φ′

(
Φ−1(Ψ(y))

)
= 1

Nσ

N∑
i=1

exp
(

− (y − xi)2

2σ2

)
· exp

( (Φ−1(Ψ(y))2

2

)
≤ max

1≤i≤N−1

1
Nσ

· N · exp
(

− (xi+1 − xi)2

8σ2

)
· exp

( (Φ−1(Ψ((xi + xi+1)/2)))2

2

)
≤ max

1≤i≤N−1

1
σ

· exp
(

− (xi+1 − xi)2

8σ2

)
· exp(q2).

(82)

where q is the (1 − 1/N)th quantile of the standard Gaussian distribution. Again, by the formula for the
derivative of inverse functions, there exists x∗ ∈ R such that

Sg(x∗) ≥ min
1≤i≤N−1

σ · exp
( (xi+1 − xi)2

8σ2

)
· exp(−q2). (83)

C.6 Steepness of Measure-Preserving Maps in Higher Dimensions

The standard result in (Durrett, 2019) specifically addresses the case of lemma C.2 where K = 1. And it
can be straightforwardly extended to encompass any K.
Lemma C.2 ((Durrett, 2019)). Let X ∼ ρ(x)dx be a n-dimensional random vector. Let D ⊂ Rn sat-
isfy P(X ∈ D) = 1. Assume that the map

φ : D =
K⊎

k=1
Di → Rn (84)

satisfies the following requirements: for each 1 ≤ k ≤ K, φ := φ|Dk
is injective and its inverse function is

continuously differentiable. Then the probability density function of Y = φ(X) is

ρY (y) =
K∑

k=1
ρX

(
φ−1(y)

)
·
∣∣ det

(
Jφ−1

k
(y)

)∣∣ · 1φ(Dk)(y). (85)

30



Published in Transactions on Machine Learning Research (03/2025)

Equivalently, for any x ∈ D,

ρY (φ(x)) =
K∑

k=1
ρX(x) · | det(Jφ(x))|−1 · 1φ(Dk)(φ(x)). (86)

Theorem C.4. Assume that the real data distribution pdata(x) satisfies assumption 2.1, and that the noise
prior pz(z) is the truncated Gaussian Nr(0, In) defined on the n-dimensional ball Br(0). Without loss of
generality, suppose xi ̸= 0 for all 1 ≤ i ≤ N . Let g : Br(0) → Rn be a continuously differentiable, piecewise
injective function satisfying g#pz = pdata. Then, there exists a point x∗ ∈ Rn such that the steepness Sg(x∗)
satisfies Sg(x∗) ≥ M , where

M = δ · σ ·
√

2π · max
λ∈[0,2]

min
1≤i≤N

exp
(∥λx̄ − xi∥2

2
2nσ2

)
. (87)

Here, x̄ =
∑N

i=1 xi/N is the mean of the mode centers, and δ = exp(−r2/2)/
√

2π accounts for the truncation
of the Gaussian distribution.

Proof. Let Dk (1 ≤ k ≤ K) be a partition of Br(0) such that for each 1 ≤ k ≤ K, g|Dk
is injective. We

regard g as the composition of two functions g := g2 ◦ g1. Here, g1 : Br(0) → (0, 1)n satisfies

g1(x) = g1(x1, x2, . . . , xn) = (Φr(x1), Φr(x2), . . . , Φr(xn)), (88)

where Φr(·) is the cumulative density function of the 1-dimensional standard Gaussian distribution truncated
in (−r, r). It is straightforward to show that the derivative of Φr has a positive lower bound, say,

δ := 1√
2π

exp
(

− r2

2

)
. (89)

Thus | det Jg1(x)| ≥ δn for any x ∈ Br(0).

By lemma C.1, g1#pz = π, where π is the uniform distribution on (0, 1)n. In the rest of the proof, we direct
our focus to g2 : (0, 1)n → Rn, which satisfies g2#π = pdata(x). Because g2 = g ◦ g−1

1 and g is injective on
Di (1 ≤ i ≤ N), we conclude that g2 is injective on g1(Dk) (1 ≤ k ≤ K). By applying lemma C.2 to g2 and
g1(Dk) (1 ≤ k ≤ K), we deduce that for y ∈ (0, 1)n,

pdata(g2(y)) =
K∑

k=1

1
| det(Jg2(y))| · 1g2(g1(Dk))(g2(y)) ≥

K∑
k=1

1
| det(Jg2(y))| · 1g1(Dk)(y) = 1

| det(Jg2(y))| . (90)

Let BR(0) be the n-dimensional open ball centered at the origin with radius R = 2 · max1≤i≤N ∥xi∥2. We
consider the point y0 satisfying

g2(y0) = arg max
x∈BR(0)

min
1≤i≤N

∥x − xi∥2. (91)

If there are many of them, we randomly pick one. Let x̄ =
∑N

i=1 xi/N . For this y0, we have

pdata(g2(y0)) ≤ f̂(λx̄) = 1
N

N∑
i=1

1
(2πσ2)n/2 · exp

(
− ∥λx̄ − xi∥2

2
2σ2

)
(92)

for any λ ∈ [0, 2].

Hence
| det(Jg2(y0))| ≥ pdata(g2(y0))−1 ≥ (2πσ2)n/2 · min

1≤i≤N
exp

(∥λx̄ − xi∥2
2

2σ2

)
. (93)

Recall that we have | det(Jg1(g2(y0)))| ≥ δn, where δ = 1√
2π

exp
(

− r2

2

)
.

31



Published in Transactions on Machine Learning Research (03/2025)

Combine the above results and we have

| det(Jg(y0))| = | det(Jg2(y0)) det(Jg1(g2(y0)))| ≥ (
√

2πσδ)n · min
1≤i≤N

exp
(∥λx̄ − xi∥2

2
2σ2

)
. (94)

If Sg(y0) < M , then by the property that the determinant of a matrix is bounded above by the nth power
of its spectral norm, we have

| det(Jg(y0))| < Mn. (95)

However, substituting the expression for M into this inequality leads to a contradiction with the previously
derived bounds. Therefore, we conclude that the assumption Sg(y0) < M is invalid. Let x∗ = y0, which
completes the proof.

We remark that by choosing λ = 1, the lower bound becomes

M = δ · σ ·
√

2π · min
1≤i≤N

exp
(∥x̄ − xi∥2

2
2nσ2

)
, (96)

which provides a useful baseline as it directly relates the bound to the distance between the mean of all
modes, x̄, and individual modes, offering an interpretable measure of steepness.

C.7 Evolution of Steepness

In theorem C.5, we first analyze a simplified setting where pdata composed of a single mode with large
variance, and derive a recurrence relation for the steepness kt of the generator g at x = 0. This relation
provides two key implications: (i) the steepness kt increases monotonically over time, ensuring that the
generator progressively adapts to map the latent distribution pz to the real data distribution pdata; and
(ii) as t → ∞, kt converges to k∗

5, the steepness of the optimal generator, indicating that the generator
eventually reaches the steepness required for effective mode alignment.
Theorem C.5. Assume that pdata ∼ N (0, k2

∗In) and that the discriminator is optimal, i.e., the discriminator
consistently provides the precise moving direction for the particle. Then kt, the steepness of g at x = 0 at
discrete time step t satisfies

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

, (97)

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In).

Proof. Let φ(x) be the probability density function of the n-dimensional standard Gaussian distribution

φ(x) = 1
(2π)n/2 · exp

(
− 1

2x⊤x
)

. (98)

Then the probability density function of N (0, k2In) is φ(x/k)/k. Let xt = ktx0 denotes the position of
the particle at time t. Here, kt represents the steepness of the generator function at x = 0. We investigate
the evolution of the particle subject to the vector field given by ∇d(x)/d(x). Assuming the discriminator is
optimal, this process is governed by the following explicit formula (Yi et al., 2023):

xt+1 = xt + s · ∇r(xt)
r(xt)(r(xt) + 1) , t = 1, 2, . . . , T. (99)

Here, s denotes the step size, T is the maximum time, and

r(x) = φ(x/k∗)/k∗

φ(x/kt)/kt
(100)

5 This result can be shown by taking the limit t → +∞ on both sides of the recurrence relation.

32



Published in Transactions on Machine Learning Research (03/2025)

is the ratio of the probability density function of pdata and pg. By the formula of φ(x), we deduce
that ∇φ(x) = −φ(x)x. Below we compute ∇r(x) by the chain rule:

∇r(x) = kt

k∗
· ∇φ(x/k∗) · φ(x/kt) − φ(x/k∗)∇φ(x/kt)

φ(x/kt)2

= kt

k∗
·
( 1

k2
t

− 1
k2

∗

)φ(x/k∗)
φ(x/kt)

· x.

(101)

Using xt = ktx0, we derive the following recurrent formula for {kt}T
t=0:

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

. (102)

In the next theorem C.6, we analyze the setting where pdata is a symmetric mixture of Gaussians and derive
an evolution equation in continuous time for the steepness of the generator function gt at x = 0, i.e., g′

t(0).
This equation provides two key implications: (i) when the third-order derivative of gt at 0, i.e., g

(3)
t (0), is

small compared to g′
t(0) (for example, when gt can be well-approximated by a linear function near x = 0,

as fig. 3 depicts), the steepness g′
t(0) monotonically increases; and (ii) at an early stage of training, the

dominant terms in the numerator and denominator of the right-hand side of the evolution equation are
(µ2 − σ2)/σ4 · (g′

t(0))3 and (g′
t(0))2, respectively. As a result, g′

t(0) initially grows exponentially with rate
(µ2 −σ2)/σ4. This suggests that when the modes are well separated (µ ≫ σ), the generator rapidly increases
its steepness to match the target distribution.
Theorem C.6. Suppose pdata is a symmetric mixture of Gaussians

pdata ∼ 0.5N (−µ, σ2) + 0.5N (µ, σ2) (103)

where µ ≫ σ, i.e., the modes are well separated, and that the discriminator is optimal, i.e., the discriminator
consistently provides the precise moving direction for the particle. Let gt : R → R be a one-dimensional
generator evolving in continuous time t ≥ 0 according to the gradient-flow limit of the update

gt+∆t(z) = gt(z) + ∆t · d′
t(gt(z))

dt(gt(z)) , (104)

as in algorithm 1, where
dt(x) = pdata(x)

pdata(x) + pgt
(x) , (105)

and pgt
is the push-forward of the standard normal N (0, 1) under gt. Assume that gt is continuously differ-

entiable for all t ≥ 0 with g0 being an odd function and g′
0(0) > 0. Then the steepness of g at z = 0, namely

g′
t(0), satisfies the ODE

d
dt

g′
t(0) = (µ2 − σ2)/σ4 · (g′

t(0))3 + g′
t(0) + g

(3)
t (0)

exp(−µ2/(2σ2))/σ · (g′
t(0))3 + (g′

t(0))2 . (106)

Proof. We split the argument into the following steps.

(i) Deriving the continuous-time limit and PDE. As ∆t → 0, the discrete update

gt+∆t(z) = gt(z) + ∆t · d′
t(gt(z))

dt(gt(z)) (107)

yields, in the limit, the gradient-flow PDE

∂

∂t
gt(z) = d′

t(gt(z))
dt(gt(z)) , (108)

where dt(x) = pdata(x)
pdata(x) + pgt(x) and pgt is the push-forward of the standard normal under gt.

33



Published in Transactions on Machine Learning Research (03/2025)

(ii) Proving gt remains an odd function. By assumption, g0 is an odd function. Because the update
rule involves only derivatives and ratios that preserve the symmetry, it follows by a symmetry argument that
gt remains odd for all t. In particular, this implies gt(0) = 0 and g′′

t (0) = 0.

(iii) Differentiating with respect to z. Differentiate both sides with respect to z. By the chain rule,

∂

∂t
g′

t(z) = ∂

∂z

(d′
t(gt(z))

dt(gt(z))

)
=

(d′′
t (gt(z))

dt(gt(z)) − (d′
t(gt(z)))2

(dt(gt(z)))2

)
g′

t(z). (109)

Evaluating at z = 0 gives
d
dt

g′
t(0) =

(d′′
t (0)

dt(0) − (d′
t(0))2

(dt(0))2

)
g′

t(0). (110)

(iv) Computing pgt
(0), p′

gt
(0), p′′

gt
(0) and likewise for pdata. By the density transformation formula,

pgt
(x) =

pz

(
g−1

t (x)
)∣∣g′

t

(
g−1

t (x)
)∣∣ , where pz = N (0, 1). (111)

Setting x = 0 and noting that g−1
t (0) = 0 (since gt is odd) yields

pgt
(0) = 1√

2πg′
t(0)

. (112)

Differentiating again and using p′
z(0) = 0 along with g′′

t (0) = 0, we obtain

p′
gt

(0) = 0,

p′′
gt

(0) = − 1√
2π

· g′
t(0) + g

(3)
t (0)(

g′
t(0)

)4 .
(113)

For the mixture distribution pdata(x), we have

pdata(0) = 1√
2πσ2

· exp
(

− µ2

2σ2

)
,

p′
data(0) = 0,

p′′
data(0) = µ2 − σ2

σ4
√

2πσ2
· exp

(
− µ2

2σ2

)
.

(114)

Then, by definition,

d′
t(0) =

p′
data(x)pgt(x) − pdata(x)p′

gt
(x)(

pdata(x) + pgt
(x)

)2

∣∣∣∣∣
x=0

= 0, (115)

d′′
t (0) =

p′′
data(0)pgt

(0) − pdata(0)p′′
gt

(0)(
pdata(0) + pgt

(0)
)2 . (116)

(v) Assembling the ODE for g′
t(0). Substitute the above expressions into

d
dt

g′
t(0) =

(d′′
t (0)

dt(0) − (d′
t(0))2

(dt(0))2

)
g′

t(0) (117)

to get
d
dt

g′
t(0) =

p′′
data(0)pgt

(0) − pdata(0)p′′
gt

(0)(
pdata(0) + pgt

(0)
)

· pdata(0)
g′

t(0). (118)

Plugging in the explicit forms, we obtain

d
dt

g′
t(0) = (µ2 − σ2)/σ4 · (g′

t(0))3 + g′
t(0) + g

(3)
t (0)

exp(−µ2/σ2)/σ · (g′
t(0))3 + (g′

t(0))2 . (119)

This completes the proof.

34



Published in Transactions on Machine Learning Research (03/2025)

C.8 Quantitative Results on How Steepness Impacts the Severity of Mode Mixture

Theorem C.7. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with n = 1 and
separation condition ∆ = 6σ. Furthermore, assume that the generator function g is increasing and satisfies
supx∈R Sg(x) ≤ k. Additionally, assume that

g−1
(xi + xi+1

2

)
= Φ−1

(
Ψ

(xi + xi+1

2

))
, (120)

where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
and Ψ(x) is the CDF of the distribution pdata(x). Then, the probability that the particles fall into the interval

N−1⋃
i=1

[xi + 3σ, xi+1 − 3σ], (121)

which indicates mode mixture, is at least

N−1∑
i=1

(
Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
+ xi+1 − xi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
− xi+1 − xi − 3σ

2k

))
. (122)

Proof. Given x ∼ N (0, 1), we need to calculate the probability that

x ∈
N−1⋃
i=1

[g−1(xi + 3σ), g−1(xi+1 − 3σ)]. (123)

Since g−1(
(xi + xi+1)/2

)
is identical to its optimal counterpart, it suffices to analyze how g−1(xi + 3σ) and

g−1(xi+1 − 3σ) deviate from this value. In other words, we only need to compute the maximum value of
g−1(xi +3σ) and the minimum value of g−1(xi+1 −3σ), as the probability that a standard Gaussian variable
falls within an interval decreases with respect to its left endpoint and increases with respect to its right
endpoint. Using the property that supx∈R Sg(x) ≤ k, we have:

g−1(xi + 3σ) ≤ g−1
(xi + xi+1

2

)
− xi+1 − xi − 3σ

2k
, (124)

and
g−1(xi+1 − 3σ) ≥ g−1

(xi + xi+1

2

)
+ xi+1 − xi − 3σ

2k
. (125)

By summing over all intervals, we derive that the probability that particles fall into

N−1⋃
i=1

[xi + 3σ, xi+1 − 3σ] (126)

is at least
N−1∑
i=1

(
Φ

(
g−1

(xi + xi+1

2

)
+ xi+1 − xi − 3σ

2k

)
− Φ

(
g−1

(xi + xi+1

2

)
− xi+1 − xi − 3σ

2k

))

=
N−1∑
i=1

(
Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
+ xi+1 − xi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
− xi+1 − xi − 3σ

2k

))
.

(127)
Note that for the case that N = 2 and −x1 = x2 = x, this probability simplifies to

Φ
(2x − 3σ

2k

)
− Φ

(
− 2x − 3σ

2k

)
. (128)

35



Published in Transactions on Machine Learning Research (03/2025)

C.9 A Local Analysis of Steepness at Collapse

Theorem C.8. Following the notations in algorithm 1, assume that after the update step, the generator is
optimal in the sense that gθ′(zi) = Ẑi. Further assume there are infinitely many particles and that the step
size s > 0 is sufficiently small. Then, the Jacobian Jgθ′ (z) of the updated generator gθ′ satisfies

Jgθ′ (z) = Jgθ
(z) + s · ∇x

(∇dω

dω

)(
gθ(z)

)
· Jgθ

(z), (129)

where ∇x(∇dω/dω)(x) is the Jacobian of the vector field ∇dω/dω evaluated at x.

Proof. By the algorithm, particles are updated as

Ẑ = Z + s · ∇dω(Z)
dω(Z) , where Zi = gθ(z). (130)

Assuming the generator is optimal after the update, the new generator satisfies

gθ′(z) = Ẑ = gθ(z) + s · ∇dω(gθ(z))
dω(gθ(z)) . (131)

Differentiating both sides with respect to z, we obtain

Jgθ′ (z) = Jgθ
(z) + s · ∇z

(∇dω(gθ(z))
dω(gθ(z))

)
. (132)

Applying the chain rule to compute the Jacobian of the velocity field:

∇z

(∇dω(gθ(z))
dω(gθ(z))

)
= ∇x

(∇dω

dω

)(
gθ(z)

)
· Jgθ

(z), (133)

where ∇x(∇dω/dω)(x) is the Jacobian of the vector field evaluated at x.

Theorem C.9. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with separation
condition ∆ = 8σ. Suppose the current generator is gθ, and the current discriminator d(x) satisfies the linear
model assumption 4.1 near a certain mode xi, specifically d(x) = 1/2 − ∥x − xi∥2/(8σ) for all x ∈ B4σ(xi).
Under the same conditions as in theorem 4.1, the steepness of the updated generator gθ′ satisfies

Sgθ′ (z) ≤
(

1 − s

(4σ − r)2

)
· Sgθ

(z), (134)

for all latent vectors z such that gθ(z) ∈ B2σ(xi), where r = ∥gθ(z) − xi∥2, provided that the step size
s < (4σ − r)2 is sufficiently small.

Proof. Given the discriminator’s linear behavior near the mode xi, expressed as

d(x) = 1
2 − 1

8σ
· ∥x − xi∥2, (135)

for x ∈ B2σ(xi), the gradient and Hessian (where the Hessian specifically refers to ∇2 log d(x)) of d(x) are:

∇d(x) = − y

8σr
, ∇x

(∇d(x)
d(x)

)
= − I

r(4σ − r) + yy⊤

r3(4σ − r) − yy⊤

r2(4σ − r)2 , (136)

where r = ∥x−xi∥2 and y = x−xi. Denoting the Hessian by H, the updated generator’s Jacobian satisfies

Jgθ′ (z) = (I + sH) · Jgθ
(z). (137)

By the submultiplicative property of the spectral norm, we have

Sgθ′ (z) = ∥Jgθ′ (z)∥2 ≤ ∥I + sH∥2 · ∥Jgθ
(z)∥2 = ∥I + sH∥2 · Sgθ

(z). (138)

36



Published in Transactions on Machine Learning Research (03/2025)

Next, we analyze ∥I + sH∥2. Since yy⊤ is rank-1 with the only nonzero eigenvalue r2, the eigenvalues of
H are

− 1
r(4σ − r) (multiplicity n − 1), − 1

r(4σ − r) + 4σ − 2r

r(4σ − r)2 (multiplicity 1). (139)

The eigenvalues of I + sH are therefore

1 − s

r(4σ − r) (multiplicity n − 1), 1 − s

r(4σ − r) + s(4σ − 2r)
r(4σ − r)2 (multiplicity 1). (140)

Since I + sH is a symmetric matrix, the spectral norm of I + sH is the largest eigenvalue

∥I + sH∥2 = 1 − s

r(4σ − r) + s(4σ − 2r)
r(4σ − r)2 = 1 − s

(4σ − r)2 , (141)

where we implicitly use the condition that the step size s < (4σ − r)2, so that I + sH is positive definite.
Substituting back, we obtain

Sgθ′ (z) ≤
(

1 − s

(4σ − r)2

)
· Sgθ

(z), (142)

as required.

D Analysis of a Class of Suboptimal Discriminators

D.1 The Class of Suboptimal Discriminators

In this section, we analyze a class of suboptimal discriminators that can be expressed as

d̂ω(x) = pdata(x)
pdata(x) + f(r(x)) · pg(x) , (143)

where r(x) = pdata(x)/pg(x) represents the density ratio, and f is a scalar function. The optimal discrim-
inator, as established by Goodfellow et al. (2014), corresponds to the case where f ≡ 1. This formulation
naturally arises from the training process of the discriminator, which effectively functions as a binary clas-
sifier distinguishing between real and generated data. During training, gradient descent approximates the
density ratio r(x), and deviations from the true value are captured by the function f(r(x)).

The term f(r(x)) quantifies the error in the estimation of the density ratio. Specifically, the suboptimal
discriminator can be rewritten as:

d̂ω(x) = 1
1 + f(r(x)) ·

(
pdata(x)/pg(x)

)−1 = 1
1 +

(
r(x)/f(r(x))

)−1 . (144)

This highlights the role of f(r(x)) as a measure of deviation from the optimal case. When f(r(x)) = 1, the
discriminator achieves optimality, perfectly distinguishing between real and generated samples. However,
deviations from f(r(x)) = 1 reflect imperfections in the discriminator, introducing bias or error into the
classification process. Such a modeling allows us to analyze and understand the behavior of suboptimal
discriminators and their impact on the overall performance of GANs.

D.2 The Influence of the Suboptimal Discriminator to the Vector Field

In this subsection, we investigate the influence of the suboptimal discriminator on the vector field that
governs the movement of particles. This analysis complements the discussion in section 3.
Proposition D.1. Assume that f ∈ C2(0, +∞). Then, at a point x where pdata(x)pg(x) > 0, the cosine
of the angle θ between the suboptimal vector ∇d̂ω(x)/(2d̂ω(x)) and the optimal vector ∇d∗(x)/(2d∗(x)) is
given by

cos θ =
〈
∇d̂ω(x), ∇d∗(x)

〉∥∥∇d̂ω(x)
∥∥

2

∥∥∇d∗(x)
∥∥

2

= sign
(f(r(x))

r(x) − f ′(r(x))
)

. (145)

Consequently, there exists δ > 0 that depends on f such that whenever r(x) < δ, the two vectors are in the
same direction.

37



Published in Transactions on Machine Learning Research (03/2025)

Proof. To calculate the angle between two vectors, we can ignore their scalar coefficients. Therefore, we only
need to determine the angle between ∇d̂ω(x) and ∇d∗(x). Using the results derived in theorem C.1, this
calculation reduces to finding the angle between

−pdata(x)∇pg(x) + pg(x)∇pdata(x) (146)

and
− pdata(x)∇

(
α(x) · pg(x)

)
+

(
α(x) · pg(x)

)
∇pdata(x)

= α(x)
(

− pdata(x)∇pg(x) + pg(x)∇pdata(x)
)

− pdata(x)pg(x)∇α(x),
(147)

where α(x) = f(r(x)). We use the same technique and divide both vectors by the scalar pdata(x)pg(x)α(x).
By applying the chain rule, we only need to compute the angle between

−∇ log pg(x) + ∇ log pdata(x) = ∇ log r(x) (148)

and
∇ log r(x) − ∇ log α(x). (149)

We proceed with the final calculations:

cos θ = ⟨∇ log r(x), ∇ log(r(x)/f(r(x)))⟩
∥∇ log r(x)∥2∥∇ log(r(x)/f(r(x)))∥2

. (150)

For the numerator, we have ∇ log r(x) = ∇r(x)/r(x), and

∇ log f(r(x)) = f ′(r(x))
f(r(x)) · ∇r(x), (151)

implying that ∇ log r(x) and ∇ log(r(x)/f(r(x))) are both parallel to ∇r(x). Therefore,

cos θ = sign
( 1

r(x) − f ′(r(x))
f(r(x))

)
= sign

(f(r(x))
r(x) − f ′(r(x))

)
.

(152)

By the continuity of f ′′, there exists ε > 0 such that for x ∈ [0, ε), we have |f ′′(x)| < M . As a result, for x
such that r(x) < δ := min

(
ε,

√
2f(0)/M

)
, we have

cos θ = sign
(
f(r(x)) − r(x)f ′(r(x))

)
= sign

(
f(0) + r(x)2f ′′(ξ)/2

)
= 1 (153)

for some ξ ∈ (0, r(x)), where we use Taylor’s expansion with the Lagrange remainder.

We now briefly discuss the implications of proposition D.1. Firstly, this proposition considers f ≡ 1 as a
special case, in which cos θ = 1 for any choice of x. Secondly, although the proposition seems to hold only
for x where r(x) is small, this is sufficient for our purposes. In this subsection, we are focusing on the fitting
phase, where r(x) is typically small for x ∼ pg(x). Finally, it may seem counter-intuitive that the vector
field of the suboptimal discriminator aligns perfectly with that of the optimal discriminator. However, it is
important to note that while the directions of these two vector fields may be the same, their magnitudes can
differ. We choose not to delve further into this topic because the magnitudes can be adjusted by varying the
step sizes.

D.3 The Influence of the Suboptimal Discriminator to the Evolution of Steepness

In this subsection, we investigate the influence of the suboptimal discriminator on the evolution of steepness.
This analysis complements the discussion in section 3.2.

38



Published in Transactions on Machine Learning Research (03/2025)

Proposition D.2. Assume that pdata ∼ N (0, k2
∗In) and that the discriminator is suboptimal and takes the

form
d̂ω(x) = pdata(x)

pdata(x) + f(r(x)) · pg(x) , (154)

where r(x) = pdata(x)/pg(x), and f is a function measuring the deviation of d̂ω(x) from the optimal dis-
criminator. Then kt, the steepness of g at x = 0 at discrete time step t satisfies

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· f(r(ktx0)) − r(ktx0)f ′(r(ktx0))

r(ktx0) + f(r(ktx0)) , (155)

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In) and

r(ktx0) = ktφ(ktx0/k∗)
k∗φ(x0) . (156)

Proof. Let φ(x) be the probability density function of the n-dimensional standard Gaussian distribution

φ(x) = 1
(2π)n/2 · exp

(
− 1

2x⊤x
)

. (157)

Then the probability density function of N (0, k2In) is φ(x/k)/k. Let xt = ktx0 denotes the position of the
particle at time t. Here, kt represents the steepness of the generator function. We investigate the evolution
of the particle subject to the vector field given by ∇d̂ω(x)/d̂ω(x), which can be written in terms of r(x) as

xt+1 = xt + s ·
(
f(r(xt)) − r(xt)f ′(r(xt))

)
∇r(xt)

r(xt)
(
r(xt) + f(r(xt))

) , t = 1, 2, . . . , T. (158)

By the formula of φ(x), we deduce that ∇φ(x) = −φ(x)x. Below we compute ∇r(x) by the chain rule:

∇r(x) = kt

k∗
· ∇φ(x/k∗) · φ(x/kt) − φ(x/k∗)∇φ(x/kt)

φ(x/kt)2

= kt

k∗
·
( 1

k2
t

− 1
k2

∗

)
· φ(x/k∗)

φ(x/kt)
· x.

(159)

Using xt = ktx0, we derive the following recurrent formula for {kt}T
t=0:

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· f(r(ktx0)) − r(ktx0)f ′(r(ktx0))

r(ktx0) + f(r(ktx0)) , (160)

where
r(ktx0) = ktφ(ktx0/k∗)

k∗φ(x0) . (161)

Note that this proposition considers f ≡ 1 as a special case, leading to the same conclusion as in theorem 3.3.

E Disparity Among Modes Across Different Datasets

E.1 MNIST

Preprocessing. We first transform the images in MNIST by sequentially resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 8.

39



Published in Transactions on Machine Learning Research (03/2025)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 33.7 24.9 24.8 27.8 20.2 25.2 28.1 24.9 27.4

33.7 0.0 22.5 22.6 25.0 21.3 25.1 23.5 20.9 23.2

24.9 22.5 0.0 19.3 21.1 20.1 17.3 23.8 16.9 21.8

24.8 22.6 19.3 0.0 23.2 13.7 23.6 22.7 15.9 20.8

27.8 25.0 21.1 23.2 0.0 18.2 18.8 17.9 19.2 10.8

20.2 21.3 20.1 13.7 18.2 0.0 19.2 19.6 13.6 16.5

25.2 25.1 17.3 23.6 18.8 19.2 0.0 25.1 20.4 20.7

28.1 23.5 23.8 22.7 17.9 19.6 25.1 0.0 20.9 13.1

24.9 20.9 16.9 15.9 19.2 13.6 20.4 20.9 0.0 16.7

27.4 23.2 21.8 20.8 10.8 16.5 20.7 13.1 16.7 0.0
0

5

10

15

20

25

30

Figure 8: Frobenius distances between different modes in MNIST. The tensor of the modes are approximated
by taking the average of image tensors that share the same label.

E.2 Fashion MNIST

Preprocessing. We first transform the images in Fashion MNIST by first resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 9.

T-
sh

irt
/to

p

Tr
ou

se
r

Pu
llo

ve
r

Dr
es

s

Co
at

Sa
nd

al

Sh
irt

Sn
ea

ke
r

Ba
g

An
kl

e 
bo

ot

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

0.0 28.2 24.7 20.0 25.5 43.0 16.3 46.3 34.0 43.2

28.2 0.0 37.5 17.4 36.9 40.7 30.8 44.2 43.5 48.1

24.7 37.5 0.0 32.3 10.8 43.2 11.7 45.0 25.8 38.7

20.0 17.4 32.3 0.0 30.7 40.1 23.7 43.0 37.1 44.0

25.5 36.9 10.8 30.7 0.0 46.8 13.5 47.7 27.4 41.1

43.0 40.7 43.2 40.1 46.8 0.0 37.6 17.2 34.1 31.8

16.3 30.8 11.7 23.7 13.5 37.6 0.0 40.6 24.1 36.8

46.3 44.2 45.0 43.0 47.7 17.2 40.6 0.0 33.6 32.5

34.0 43.5 25.8 37.1 27.4 34.1 24.1 33.6 0.0 27.8

43.2 48.1 38.7 44.0 41.1 31.8 36.8 32.5 27.8 0.0
0

10

20

30

40

Figure 9: Frobenius distances between different modes in Fashion MNIST. The tensor of the modes are
approximated by taking the average of image tensors that share the same label.

E.3 CIFAR-10

Preprocessing. We first transform the images in CIFAR-10 by sequentially resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

40



Published in Transactions on Machine Learning Research (03/2025)

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 10.

ai
rp

la
ne

au
to

m
ob

ile bi
rd ca

t

de
er

do
g

fro
g

ho
rs

e

sh
ip

tru
ck

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

0.0 25.9 24.8 29.5 33.1 30.7 38.0 25.9 14.4 22.5

25.9 0.0 13.8 16.0 17.8 19.0 18.7 14.9 20.5 14.8

24.8 13.8 0.0 8.1 9.2 11.1 14.3 6.5 24.5 22.2

29.5 16.0 8.1 0.0 7.3 6.3 10.7 9.3 29.0 26.3

33.1 17.8 9.2 7.3 0.0 9.5 7.4 10.3 32.2 28.5

30.7 19.0 11.1 6.3 9.5 0.0 12.8 13.2 29.9 29.6

38.0 18.7 14.3 10.7 7.4 12.8 0.0 14.7 35.3 30.0

25.9 14.9 6.5 9.3 10.3 13.2 14.7 0.0 26.3 21.3

14.4 20.5 24.5 29.0 32.2 29.9 35.3 26.3 0.0 16.8

22.5 14.8 22.2 26.3 28.5 29.6 30.0 21.3 16.8 0.0
0

5

10

15

20

25

30

35

Figure 10: Frobenius distances between different modes in CIAFR-10. The tensor of the modes are approx-
imated by taking the average of image tensors that share the same label.

F Detailed Experimental Settings

All codes are provided in the supplementary material.

F.1 Verifying Fitting

Methodology. We demonstrate that the fitting phase exist in real-world datasets. To do this, we use a
classification network q(x) that takes an image tensor x as an input and outputs a 10-dimensional vector,

(p0, p1, . . . , p9), (162)

where each pi ∈ [0, 1] denotes the likelihood of x corresponding to the ith category (e.g., the 1st category in
MNIST corresponds to the handwritten digit 1 and the 2nd category in Fashion MNIST represents pullovers).
Our focus gravitates towards those pi’s that exhibit significant magnitudes. For discernibility, a threshold τ
is set to 10−2. In other words, if pi > 10−2, then there is a notable probability that x belongs to the
ith category. Empirical observations suggest that seldom do more than three pi’s surpass the designated
threshold. Hence, for any x, we may pair (i, j) when both pi and pj exceed τ . By pairing, the intuition is
that such x potentially resides between modes i and j. In scenarios where only a single pi surpasses τ , i is
paired with itself, implying that the x predominantly belongs to the ith category. We count the occurrences
of the pairings (i, j) (0 ≤ i, j ≤ 9) in a batch of size 256 and visualize them with heatmaps in fig. 4, fig. 14 and
fig. 15. In these figures, the value of the entry (i, j) represents the logarithmically transformed occurrence
frequency of pair (i, j) within a batch, adjusted by one, thereby mitigating the impact of dominant diagonal
values on the colorbar.

Classification networks. We use the MNIST classification network in MNIST classification network and
the Fashion MNIST classification network in Fashion MNIST classification network.

41

https://github.com/Joy2469/Deep-Learning-MNIST---Handwritten-Digit-Recognition.git
https://www.kaggle.com/code/shriramjaju/pytorch-fashionmnist/notebook


Published in Transactions on Machine Learning Research (03/2025)

Number of training runs. We conducted our experiments at least 50 times and consistently observed
similar patterns across all trials. Therefore, we randomly selected two of these experiments to present in this
paper.

F.2 Early Stopping

Early stopping on 3-dimensional Gaussian mixture. In this part, our codes borrow heavily from
NSGAN. Both the generator and the discriminator are implemented as full-connected neural networks with
SGD optimizers. Now we elaborate on how to calculate the thresholds defined in algorithm 2. The dis-
criminator threshold is given by kd/(2σ). We set kd = 2, the distance between two nearest modes in the
3-dimensional Gaussian mixture dataset. For σ, it equals

√
0.0125 in our setting. Therefore the threshold is

kd/(2σ) = 2/(2 ×
√

0.0125) ≈ 8.9. (163)

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 50.

Early stopping on MNIST. In this part, our generator and discriminator architectures borrow heavily
from NSGAN on MNIST. Both the generator and the discriminator are implemented as convolutional neural
networks with Adam optimizers. Now we elaborate on how to calculate the threshold defined in algorithm 2.
The discriminator threshold is given by kd/(2σ). We set kd = 33.7, the distance between two farthest modes
in MNIST (please refer to appendix E). For σ, we first compute the population variance of the images from
each label, arriving at 10 values. Then we compute their average value, and divide this value by 64 × 64 × 1,
i.e., the total number of dimensions. Therefore the threshold is

kd/(2σ) = 33.7/(2 ×
√

0.33/642) ≈ 1877. (164)

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 20.

Early stopping on Fashion MNIST. In this part, our generator and discriminator architectures borrow
heavily from NSGAN on Fashion MNIST. Both the generator and the discriminator are implemented as
convolutional neural networks with Adam optimizers. Now we elaborate on how to calculate the threshold
defined in algorithm 2. The discriminator threshold is given by kd/(2σ). We set kd = 48.1, the distance
between two farthest modes in Fashion MNIST (please refer to appendix E). For σ, we first compute the
population variance of the images from each label, arriving at 10 values. Then we compute their average
value, and divide this value by 64 × 64 × 1, i.e., the total number of dimensions. Therefore the threshold is

kd/(2σ) = 48.1/(2 ×
√

0.33/642) ≈ 2679. (165)

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 50.

Early stopping on CIFAR-10. In this part, our generator and discriminator architectures borrow heav-
ily from NSGAN on CIFAR-10. Both the generator and the discriminator are implemented as convolutional
neural networks with Adam optimizers. Now we elaborate on how to calculate the threshold defined in al-
gorithm 2. The discriminator threshold is given by kd/(2σ). We set kd = 38.0, the distance between two
farthest modes in CIFAR-10 (please refer to appendix E). For σ, we first compute the population variance
of the images from each label, arriving at 10 values. Then we compute their average value, and divide this
value by 64 × 64 × 3, i.e., the total number of dimensions. Therefore the threshold is

kd/(2σ) = 38.0/(2 ×
√

0.23/(642 × 3)) ≈ 4391. (166)

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 50.

42

https://github.com/eriklindernoren/PyTorch-GAN.git
https://raw.githubusercontent.com/pytorch/examples/master/dcgan/main.py
https://raw.githubusercontent.com/pytorch/examples/master/dcgan/main.py
https://raw.githubusercontent.com/pytorch/examples/master/dcgan/main.py


Published in Transactions on Machine Learning Research (03/2025)

Number of training runs. On all of the datasets mentioned above, we conducted our experiments at
least 100 times. We observed similar patterns across all trials, although the point at which the GANs
collapsed varied. Therefore, we choose to present those that collapsed before a certain threshold to ensure
consistency in our reported results. It is important to note that the generated samples eventually collapsed
in our experiments, either sooner or later, without contradicting the findings in our paper.

G Additional Experimental Results

G.1 The Behavior of the Discriminator at the Collapse Phase

In this subsection, we elaborate on the optimal discriminator’s behavior outlined in section 4.1.

Verification on a toy example. We first consider the following synthetic dataset

pdata ∼ 1
4N ([1, 1], 0.0125I2) + 1

4N ([1, −1], 0.0125I2) + 1
4N ([−1, 1], 0.0125I2) + 1

4N ([−1, −1], 0.0125I2),
(167)

and train the discriminator until optimal. We plot the values of the optimal discriminator in fig. 11. We
observe that discriminator values are close to 0.5 (red) in the central regions of the modes and approach
zero (dark blue) in regions far from the modes. The contours between these regions are approximately
equally spaced, indicating a linear decline in discriminator values. The distance from the mode centers to
where discriminator values vanish is approximately 0.4, aligning with the predicted 4σ = 4 ·

√
0.0125 ≈ 0.45

in assumption 4.1.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54
Di

sc
rim

in
at

or
 O

ut
pu

t

Figure 11: The values of the optimal discriminator. The discriminator values are close to 0.5 in the central
regions of the modes (i.e., [±1, ±1]) and vanish in the regions far from the modes. Between them, the
discriminator values smoothly change from 0.5 to 0.

Verification in real datasets. We justify assumption 4.1 on MNIST and Fashion MNIST. We use saved
checkpoints prior to mode collapse as the basis for our analysis, which are the 43rd epoch and the 124th
epoch, respectively, for MNIST and Fashion MNIST, under the same setting as in figs. 5, 6 and 17 to 19.
Specifically, we randomly sampled 10k points from MNIST and Fashion MNIST, and applied the k-means
algorithm to cluster these points into 100 clusters, treating the cluster centers as representative modes of
the data. We then computed the discriminator values at these cluster centers and took their average as the
baseline measurement. To evaluate the impact of perturbations, we introduced random standard Gaussian
noise with varying scales to these cluster centers. The maximum perturbation scale was determined according
to the 4σ/dim criterion described in assumption 4.1 where σ represents the average population variance of
the labels in the dataset, and dim is the dimension of the standard Gaussian noise. This ensures that

43



Published in Transactions on Machine Learning Research (03/2025)

the largest expected distance to the cluster centers equals 4σ. Finally, we plotted the mean discriminator
values as a function of the perturbation scale in fig. 12, providing a visualization of how the discriminator
responds to deviations from the original mode centers. The results demonstrate that the discriminator values
approximately follow a linear trend near the mode centers, decreasing gradually from 0.5 to 0 as the distance
from the mode centers increases.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Perturbation scale

0.1

0.2

0.3

0.4

0.5

M
ea

n 
di

sc
rim

in
at

or
 v

al
ue

s

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Perturbation scale

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
di

sc
rim

in
at

or
 v

al
ue

s
Figure 12: Mean discriminator values as a function of distance from the mode centers for MNIST (left) and
Fashion MNIST (right). These results support assumption 4.1 by illustrating how the discriminator values
vary with increasing distance from the mode centers. The mode centers are estimated using the k-means
algorithm applied to each dataset. To introduce perturbations, random standard Gaussian noise with varying
scales is added to these cluster centers. The maximum perturbation scale is set to 4σ/dim, where σ is the
average population variance across dataset labels, and dim = 64 × 64 represents the dimensionality of the
perturbation. The plots reveal that the discriminator values approximately follow a linear trend near the
mode centers, decreasing from 0.5 to 0 as the perturbation scale increases.

Visualization of the discriminator gradient field. We plot the discriminator gradient field ∇d(x)/d(x)
under assumption 4.1 in fig. 13. In the left panel, the unscaled vector field demonstrates the existence of
particles that experience large-magnitude gradients, which could propel them away from one mode to another.
In the right panel, the zoomed-in view shows the vector lengths reduced to one-tenth of their original size, yet
some vectors still pass through the centers of the modes. This serves to verify the discussions in section 4.1.

G.2 Verifying Fitting

Annotated heatmaps for MNIST. We verify the existence of fitting on MNIST. Annotated heatmaps
are employed to track the evolution of pairings (i, j) occurrence within batches of size 256. The values
depicted in these heatmaps represent the logarithm of occurrence counts plus 1, with darker colors indicating
higher values. Each heatmap includes epoch numbers ranging from 0 to 38 displayed at the bottom. Initially,
the heatmap has few nonzero entries, indicating limited sample diversity at the beginning of the fitting phase.
As training advances, more entries became nonzero, reflecting a broader distribution of generated samples
across the mode space. Notably, the values of off-diagonal entries signifies the severity of mode mixture,
which gradually decrease over the course of training, validating the fitting phase. However, the issue of mode
mixture persists even at the end of fitting. By the 36th epoch, the heatmap only has two nonzero entries,
suggesting the collapse phase, where the generated samples become less diverse and concentrate around few
modes. These observations provide empirical evidence for our proposed two phases of GAN training.

Verifying fitting in Fashion MNIST. We verify the existence of fitting in Fashion MNIST using an-
notated heatmaps. The heatmap values are the logarithm of pairings (i, j) occurrence plus 1 in batches of
size 256, with darker colors indicating higher values. Each epoch is divided into 5 collections of batches,
denoted as e, b where e is the epoch and b is the batch collection within the epoch. Initially, there are only
two nonzero entries, which suggests limited sample diversity. As training progresses, more entries become
nonzero, indicating a broader sample distribution across the mode space during the fitting phase. Notably,

44



Published in Transactions on Machine Learning Research (03/2025)

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

1.10 1.05 1.00 0.95 0.90
1.10

1.05

1.00

0.95

0.90

0.000

0.075

0.150

0.225

0.300

0.375

0.450

Figure 13: The discriminator gradient field ∇d(x)/d(x) under assumption 4.1 on the toy example. The
left panel shows the unscaled vector field, where particles experience large-magnitude gradients, with vectors
passing through the mode centers and pointing outward. This could trigger propulsion away to another mode.
The right panel provides a zoomed-in view around the bottom-left mode, with the vector lengths reduced to
one-tenth of their original size. Even with this scaling, some vectors are seen passing through the centers of
the modes.

unlike MNIST, the phase of fitting in Fashion MNIST occur quickly, evidenced by the rapid stabilization of
off-diagonal values. It is important to note that the large values in some off-diagonal entries do not neces-
sarily imply severe mode mixture. For example, “T-shirt”, “Pullover”, and “Shirt” are frequently confused
in Fashion MNIST classification tasks.

45



Published in Transactions on Machine Learning Research (03/2025)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2

2.9 0.0 0.0 0.0 0.0 0.0 1.1 1.6 1.1 2.3

0.0 3.2 1.6 0.7 0.7 1.4 1.8 1.8 1.1 1.4

0.0 1.6 3.4 0.7 0.7 0.0 1.4 1.8 2.3 0.0

0.0 0.7 0.7 3.9 0.0 1.8 1.4 2.1 1.6 2.1

0.0 0.7 0.7 0.0 3.4 0.0 1.6 1.1 0.7 2.3

0.0 1.4 0.0 1.8 0.0 3.0 1.9 0.0 1.1 1.6

1.1 1.8 1.4 1.4 1.6 1.9 2.9 0.0 1.1 0.0

1.6 1.8 1.8 2.1 1.1 0.0 0.0 4.0 0.0 1.4

1.1 1.1 2.3 1.6 0.7 1.1 1.1 0.0 2.4 1.1

2.3 1.4 0.0 2.1 2.3 1.6 0.0 1.4 1.1 3.1

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

4

3.4 0.0 0.7 0.0 1.4 0.0 1.4 0.0 1.1 2.1

0.0 3.1 1.1 0.7 1.1 0.7 0.0 1.4 0.7 1.4

0.7 1.1 3.7 1.8 1.1 0.0 0.0 2.2 2.1 0.0

0.0 0.7 1.8 3.8 0.0 1.9 0.7 1.9 0.7 1.6

1.4 1.1 1.1 0.0 3.1 0.7 1.8 1.1 1.1 2.6

0.0 0.7 0.0 1.9 0.7 3.3 1.6 0.0 1.1 0.7

1.4 0.0 0.0 0.7 1.8 1.6 3.6 0.0 0.7 0.0

0.0 1.4 2.2 1.9 1.1 0.0 0.0 3.8 0.0 1.1

1.1 0.7 2.1 0.7 1.1 1.1 0.7 0.0 3.0 1.1

2.1 1.4 0.0 1.6 2.6 0.7 0.0 1.1 1.1 3.1

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

6

3.7 0.0 1.1 0.0 0.0 0.0 1.4 0.0 0.7 1.8

0.0 3.8 0.7 0.0 0.0 0.0 1.6 1.8 0.7 0.0

1.1 0.7 3.4 1.6 0.0 0.0 0.0 1.6 1.4 0.7

0.0 0.0 1.6 3.7 0.0 1.1 0.0 1.1 0.0 1.6

0.0 0.0 0.0 0.0 3.8 0.7 1.4 0.7 1.6 1.4

0.0 0.0 0.0 1.1 0.7 3.1 1.4 0.0 1.4 0.7

1.4 1.6 0.0 0.0 1.4 1.4 3.7 0.0 0.0 0.0

0.0 1.8 1.6 1.1 0.7 0.0 0.0 4.2 0.0 0.7

0.7 0.7 1.4 0.0 1.6 1.4 0.0 0.0 3.6 1.1

1.8 0.0 0.7 1.6 1.4 0.7 0.0 0.7 1.1 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8

3.4 0.0 0.0 0.0 0.0 0.0 1.1 1.4 0.0 1.8

0.0 3.6 0.7 0.0 0.0 0.0 0.0 1.4 0.7 0.7

0.0 0.7 3.4 0.7 0.0 0.0 0.0 1.9 1.4 1.1

0.0 0.0 0.7 3.5 0.0 1.6 0.7 1.8 1.4 1.6

0.0 0.0 0.0 0.0 3.7 0.0 0.7 0.7 0.0 2.2

0.0 0.0 0.0 1.6 0.0 3.3 0.0 0.0 1.4 1.4

1.1 0.0 0.0 0.7 0.7 0.0 3.7 0.0 0.7 0.0

1.4 1.4 1.9 1.8 0.7 0.0 0.0 4.2 0.0 1.1

0.0 0.7 1.4 1.4 0.0 1.4 0.7 0.0 3.8 1.1

1.8 0.7 1.1 1.6 2.2 1.4 0.0 1.1 1.1 3.7

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

10

3.7 0.0 0.7 0.0 0.0 0.7 1.6 0.0 1.1 0.7

0.0 3.4 0.7 0.0 0.0 0.7 0.0 0.0 1.1 1.1

0.7 0.7 3.6 0.7 0.0 0.0 0.0 1.6 0.0 0.0

0.0 0.0 0.7 3.6 0.0 1.1 0.0 1.4 0.7 0.7

0.0 0.0 0.0 0.0 3.9 0.0 0.7 0.7 1.1 2.2

0.7 0.7 0.0 1.1 0.0 3.5 1.9 0.0 1.4 0.7

1.6 0.0 0.0 0.0 0.7 1.9 4.0 0.0 0.7 0.0

0.0 0.0 1.6 1.4 0.7 0.0 0.0 4.0 0.0 1.4

1.1 1.1 0.0 0.7 1.1 1.4 0.7 0.0 3.5 1.6

0.7 1.1 0.0 0.7 2.2 0.7 0.0 1.4 1.6 3.7

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

12

3.0 0.0 0.0 0.0 0.0 0.7 1.1 0.7 1.1 1.4

0.0 4.0 0.7 0.0 0.0 0.0 0.7 1.4 0.0 0.0

0.0 0.7 3.7 0.0 1.4 0.0 0.7 1.4 1.1 0.7

0.0 0.0 0.0 3.7 0.0 1.4 0.0 1.1 1.6 1.4

0.0 0.0 1.4 0.0 3.4 0.0 0.0 0.7 1.1 1.4

0.7 0.0 0.0 1.4 0.0 3.6 0.7 0.0 1.1 0.7

1.1 0.7 0.7 0.0 0.0 0.7 4.0 0.0 0.0 0.0

0.7 1.4 1.4 1.1 0.7 0.0 0.0 4.0 0.0 1.4

1.1 0.0 1.1 1.6 1.1 1.1 0.0 0.0 3.9 1.6

1.4 0.0 0.7 1.4 1.4 0.7 0.0 1.4 1.6 3.2

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

14

3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.7 1.1 1.4

0.0 3.8 0.7 0.0 0.0 0.0 0.7 1.8 0.0 1.1

0.0 0.7 3.8 1.1 0.0 0.0 1.1 1.8 0.7 1.1

0.0 0.0 1.1 3.7 0.0 1.8 0.0 1.6 0.7 1.4

0.0 0.0 0.0 0.0 3.1 0.7 1.1 0.0 0.0 1.4

0.0 0.0 0.0 1.8 0.7 3.8 1.1 0.0 1.4 1.6

0.7 0.7 1.1 0.0 1.1 1.1 3.6 0.0 0.7 0.0

0.7 1.8 1.8 1.6 0.0 0.0 0.0 4.1 0.7 1.4

1.1 0.0 0.7 0.7 0.0 1.4 0.7 0.7 3.4 0.7

1.4 1.1 1.1 1.4 1.4 1.6 0.0 1.4 0.7 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

16

4.0 0.0 1.1 0.0 0.0 0.0 1.6 0.7 1.1 0.0

0.0 3.7 0.7 0.7 0.0 0.7 0.7 1.4 0.7 0.0

1.1 0.7 3.5 1.4 1.1 0.0 0.0 1.6 1.6 1.4

0.0 0.7 1.4 3.9 0.0 1.1 0.0 0.0 1.4 0.7

0.0 0.0 1.1 0.0 3.9 0.0 0.0 0.0 0.7 1.9

0.0 0.7 0.0 1.1 0.0 3.7 1.1 0.0 0.0 0.7

1.6 0.7 0.0 0.0 0.0 1.1 3.9 0.0 0.7 0.0

0.7 1.4 1.6 0.0 0.0 0.0 0.0 3.7 0.0 1.4

1.1 0.7 1.6 1.4 0.7 0.0 0.7 0.0 3.2 1.4

0.0 0.0 1.4 0.7 1.9 0.7 0.0 1.4 1.4 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

18

4.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 1.1

0.0 3.7 0.0 1.1 0.0 0.7 0.0 0.7 0.7 0.7

0.0 0.0 3.5 0.7 0.0 0.0 0.0 1.1 0.7 0.0

0.0 1.1 0.7 3.7 0.0 1.4 0.7 1.1 1.1 1.1

0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 1.1 1.9

0.0 0.7 0.0 1.4 0.0 3.8 0.7 0.7 1.1 1.4

1.1 0.0 0.0 0.7 0.0 0.7 3.8 0.0 0.0 0.0

0.0 0.7 1.1 1.1 0.0 0.7 0.0 4.0 0.0 1.4

0.0 0.7 0.7 1.1 1.1 1.1 0.0 0.0 3.6 1.1

1.1 0.7 0.0 1.1 1.9 1.4 0.0 1.4 1.1 3.9

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

20

3.7 0.7 0.0 0.0 0.0 0.0 0.7 1.1 1.4 1.1

0.7 3.1 1.1 0.0 0.0 0.7 1.1 1.4 1.1 1.1

0.0 1.1 3.6 1.1 0.0 0.0 0.0 0.7 1.9 0.0

0.0 0.0 1.1 3.6 0.0 1.1 0.7 1.4 0.0 1.1

0.0 0.0 0.0 0.0 3.8 0.7 0.0 1.4 0.7 1.8

0.0 0.7 0.0 1.1 0.7 3.6 1.6 0.0 0.0 0.0

0.7 1.1 0.0 0.7 0.0 1.6 4.1 0.0 1.1 0.0

1.1 1.4 0.7 1.4 1.4 0.0 0.0 4.0 0.0 1.1

1.4 1.1 1.9 0.0 0.7 0.0 1.1 0.0 3.7 1.4

1.1 1.1 0.0 1.1 1.8 0.0 0.0 1.1 1.4 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

22

3.7 0.0 1.1 0.0 0.0 0.0 0.7 0.0 1.1 0.0

0.0 3.9 0.0 0.0 0.0 0.7 0.7 1.4 0.7 0.0

1.1 0.0 3.8 1.1 1.1 0.0 0.0 1.6 1.1 0.0

0.0 0.0 1.1 3.9 0.0 1.4 0.0 1.9 0.7 0.7

0.0 0.0 1.1 0.0 3.9 0.0 1.1 0.0 1.1 2.1

0.0 0.7 0.0 1.4 0.0 3.4 0.7 1.1 0.7 0.7

0.7 0.7 0.0 0.0 1.1 0.7 3.6 0.0 0.0 0.0

0.0 1.4 1.6 1.9 0.0 1.1 0.0 3.8 0.0 0.0

1.1 0.7 1.1 0.7 1.1 0.7 0.0 0.0 3.4 1.1

0.0 0.0 0.0 0.7 2.1 0.7 0.0 0.0 1.1 4.0

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

24

3.9 0.0 0.0 0.0 0.7 0.7 1.6 0.7 0.7 1.4

0.0 3.7 0.7 0.0 0.0 0.7 0.0 1.4 1.1 0.0

0.0 0.7 3.6 1.4 1.1 0.0 0.7 0.7 0.7 0.7

0.0 0.0 1.4 3.7 0.0 1.6 0.0 1.1 0.7 1.6

0.7 0.0 1.1 0.0 3.2 0.7 0.0 0.7 1.1 1.8

0.7 0.7 0.0 1.6 0.7 4.0 1.1 0.0 1.1 0.0

1.6 0.0 0.7 0.0 0.0 1.1 3.7 0.0 1.4 0.0

0.7 1.4 0.7 1.1 0.7 0.0 0.0 4.2 0.0 1.4

0.7 1.1 0.7 0.7 1.1 1.1 1.4 0.0 3.1 0.7

1.4 0.0 0.7 1.6 1.8 0.0 0.0 1.4 0.7 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

26

3.7 0.0 0.7 0.7 0.0 0.0 0.7 1.4 0.7 0.7

0.0 3.8 0.0 0.0 0.0 0.7 0.7 1.6 0.0 1.4

0.7 0.0 3.4 0.0 0.7 0.0 0.0 1.4 1.4 0.0

0.7 0.0 0.0 3.6 0.0 1.1 0.0 1.8 0.0 0.0

0.0 0.0 0.7 0.0 3.8 0.0 1.1 0.7 0.7 2.2

0.0 0.7 0.0 1.1 0.0 3.5 0.7 0.0 1.1 1.1

0.7 0.7 0.0 0.0 1.1 0.7 4.0 0.0 0.7 0.0

1.4 1.6 1.4 1.8 0.7 0.0 0.0 4.1 0.0 0.7

0.7 0.0 1.4 0.0 0.7 1.1 0.7 0.0 3.5 1.4

0.7 1.4 0.0 0.0 2.2 1.1 0.0 0.7 1.4 3.7

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

28

4.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 1.4

0.0 3.4 1.1 0.0 0.0 0.0 0.0 0.7 0.7 1.6

1.1 1.1 3.4 0.7 0.0 0.0 0.0 1.1 1.4 0.0

0.0 0.0 0.7 4.0 0.0 1.8 0.0 0.0 0.0 1.1

0.0 0.0 0.0 0.0 3.8 0.7 0.7 0.0 0.7 1.9

0.0 0.0 0.0 1.8 0.7 3.6 1.1 0.0 1.6 0.7

0.0 0.0 0.0 0.0 0.7 1.1 3.9 0.0 0.7 0.0

0.0 0.7 1.1 0.0 0.0 0.0 0.0 3.9 0.0 0.7

0.0 0.7 1.4 0.0 0.7 1.6 0.7 0.0 3.7 1.1

1.4 1.6 0.0 1.1 1.9 0.7 0.0 0.7 1.1 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

30

3.6 0.0 0.0 0.0 1.1 0.0 0.7 1.4 0.7 1.6

0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.7 1.1 0.7

0.0 0.0 3.6 1.1 0.0 0.7 0.0 1.6 1.4 1.1

0.0 0.0 1.1 3.8 0.0 0.7 0.0 0.0 0.0 1.4

1.1 0.0 0.0 0.0 3.6 0.7 0.7 1.1 0.7 1.4

0.0 0.0 0.7 0.7 0.7 3.6 1.1 0.0 1.1 1.6

0.7 0.0 0.0 0.0 0.7 1.1 4.0 0.0 0.7 0.0

1.4 0.7 1.6 0.0 1.1 0.0 0.0 3.9 0.0 1.9

0.7 1.1 1.4 0.0 0.7 1.1 0.7 0.0 3.6 1.8

1.6 0.7 1.1 1.4 1.4 1.6 0.0 1.9 1.8 3.5

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

32

3.7 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 1.4

0.0 3.8 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0

0.7 0.0 4.0 0.7 0.7 0.0 1.1 1.6 1.9 0.0

0.0 0.0 0.7 4.0 0.0 1.4 0.0 1.1 1.1 1.4

0.0 0.0 0.7 0.0 3.7 0.0 0.7 0.7 0.0 1.6

0.0 0.0 0.0 1.4 0.0 3.6 1.1 0.0 0.0 0.7

0.7 0.0 1.1 0.0 0.7 1.1 3.4 0.0 0.7 0.0

0.0 1.1 1.6 1.1 0.7 0.0 0.0 3.9 0.7 1.4

0.0 0.0 1.9 1.1 0.0 0.0 0.7 0.7 3.7 1.1

1.4 0.0 0.0 1.4 1.6 0.7 0.0 1.4 1.1 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

34

3.7 0.0 0.7 0.0 0.0 0.7 0.7 0.7 1.1 1.6

0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.7

0.7 0.0 3.7 0.7 0.0 0.0 0.0 1.8 1.6 0.0

0.0 0.0 0.7 4.0 0.0 2.1 1.1 1.4 1.4 1.9

0.0 0.0 0.0 0.0 3.7 0.0 1.1 1.1 1.4 2.1

0.7 0.0 0.0 2.1 0.0 3.7 1.1 0.0 1.1 0.0

0.7 0.0 0.0 1.1 1.1 1.1 3.6 0.0 0.0 0.0

0.7 0.7 1.8 1.4 1.1 0.0 0.0 3.7 0.0 0.7

1.1 0.7 1.6 1.4 1.4 1.1 0.0 0.0 3.9 0.7

1.6 0.7 0.0 1.9 2.1 0.0 0.0 0.7 0.7 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

36

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

38

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 14: Annotated heatmaps for verifying fitting in MNIST. The values are the logarithm of the occurrence
of pairings (i, j) plus 1 in a batch of size 256. Darker colors indicate higher values. The epochs, ranging from
0 to 38, are displayed at the bottom of each heatmap. Initially, there are few nonzero entries, suggesting
limited sample diversity. As training progresses, more entries become nonzero, indicating wider sample
distribution across mode space, which corresponds to the fitting phase. Off-diagonal entries reflect mode
mixture, which diminishes over training, confirming the fitting phase. Remarkably, mode mixture persists
even at the closure of the fitting phase. Note that by the 36th epoch, only two entries remain nonzero,
indicating the collapse phase.

46



Published in Transactions on Machine Learning Research (03/2025)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 4.8 3.0

0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.1 0.0

0.0 0.0 0.0 0.0 1.4 0.0 2.8 0.0 1.4 1.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.2 0.0 1.1 0.0 3.6

3.5 1.6 2.8 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.8

4.8 1.1 1.4 0.0 0.7 0.0 0.7 0.0 3.1 0.0

3.0 0.0 1.1 0.0 0.0 3.6 0.0 1.8 0.0 1.6

0, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.1 0.0 0.0 1.1 0.0 0.0 3.7 0.0 4.7 3.0

0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

1.1 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.8 1.1 3.2

3.7 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 1.1

4.7 0.0 0.0 0.0 0.0 1.1 0.7 0.0 4.4 0.0

3.0 0.0 0.7 0.7 0.0 3.2 0.0 1.1 0.0 0.0

0, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 4.4 3.1

0.0 3.7 0.0 1.6 0.0 0.0 1.8 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.7

0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.7 0.7 3.4

3.8 1.8 2.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0

0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.6 0.0 2.6

4.4 0.0 0.0 0.0 0.0 0.7 1.4 0.0 3.7 0.0

3.1 0.7 0.7 0.0 0.0 3.4 0.0 2.6 0.0 1.1

0, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.2 0.7 0.0 0.7 0.7 0.0 3.6 0.0 4.4 3.0

0.7 3.6 0.0 0.0 0.0 0.0 1.6 0.0 0.7 0.7

0.0 0.0 1.1 0.0 1.1 0.0 2.6 0.0 0.0 0.7

0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.7 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.6 1.1 3.4

3.6 1.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.6

4.4 0.7 0.0 0.0 0.0 1.1 0.0 0.0 4.2 0.0

3.0 0.7 0.7 0.7 0.0 3.4 0.0 1.6 0.0 1.9

0, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 4.6 2.3

0.0 3.4 0.0 1.4 0.0 0.0 2.1 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.7 0.7

0.0 1.4 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 2.9 1.4 3.5

3.6 2.1 2.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 1.6

4.6 0.0 0.7 0.0 0.0 1.4 0.7 0.0 3.0 0.0

2.3 0.7 0.7 0.7 0.0 3.5 0.0 1.6 0.0 2.2

1, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 1.6 0.0 0.0 3.8 0.0 3.8 2.6

0.0 3.9 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.7

0.0 0.0 1.6 0.0 2.6 0.0 3.0 0.0 0.0 0.0

1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 2.8 1.6 3.2

3.8 1.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.8 0.0 1.6 0.0 2.2

3.8 0.0 0.0 0.0 0.7 1.6 0.0 0.0 3.2 0.0

2.6 0.7 0.0 0.7 0.0 3.2 0.0 2.2 0.0 2.8

1, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.7 0.0 1.1 0.0 0.0 3.8 0.0 4.0 1.9

0.7 3.5 0.0 1.9 0.0 0.0 1.4 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.7 0.0 3.2 0.0 0.0 1.1

1.1 1.9 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 0.0 2.6 0.7 3.5

3.8 1.4 3.2 0.0 0.0 0.0 1.9 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 2.6

4.0 0.7 0.0 0.0 0.0 0.7 0.7 0.0 3.6 0.0

1.9 0.0 1.1 0.0 0.0 3.5 0.0 2.6 0.0 2.8

1, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.1 0.0 0.0 3.6 0.0 4.1 2.3

0.0 3.9 0.0 1.9 0.0 0.0 1.4 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0

1.1 1.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.3 0.0 2.5 1.6 3.0

3.6 1.4 3.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 2.1

4.1 0.0 0.0 0.0 0.0 1.6 0.7 0.0 3.3 0.0

2.3 0.7 0.0 0.7 0.0 3.0 0.0 2.1 0.0 3.3

1, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 1.1 0.0 1.1 0.0 0.0 3.6 0.0 3.7 1.9

1.1 4.0 0.0 1.9 0.0 0.0 1.1 0.0 0.0 0.0

0.0 0.0 1.9 0.0 1.8 0.0 3.2 0.0 0.0 0.0

1.1 1.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 2.7 1.8 3.4

3.6 1.1 3.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 1.1 0.0 2.6

3.7 0.0 0.0 0.0 0.0 1.8 0.7 0.0 3.7 0.0

1.9 0.0 0.0 0.0 0.0 3.4 0.0 2.6 0.0 3.4

1, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.7 0.0 1.4 0.0 0.0 4.0 0.0 3.8 1.8

0.7 4.3 0.0 1.6 0.7 0.0 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.1 0.0 3.3 0.0 0.0 0.0

1.4 1.6 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.7 1.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 2.3 1.6 2.9

4.0 1.1 3.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.3 0.0 1.1 0.7 1.9

3.8 0.0 0.0 0.0 0.7 1.6 0.7 0.7 3.5 0.0

1.8 0.0 0.0 0.0 0.0 2.9 0.0 1.9 0.0 2.7

2, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 1.1 0.0 0.0 3.8 0.0 3.5 1.4

0.0 4.2 0.0 1.1 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.9 0.0 3.6 0.0 0.0 0.0

1.1 1.1 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.1 0.0 2.5 0.0 3.0

3.8 0.7 3.6 0.0 0.0 0.0 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.5 0.0 3.6 0.0 2.8

3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0

1.4 0.0 0.0 0.0 0.0 3.0 0.0 2.8 0.0 3.8

2, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.1 0.0 0.0 1.8 0.0 0.0 4.0 0.0 3.4 2.3

0.0 4.0 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 2.1 0.0 3.6 0.0 0.7 1.1

1.8 0.7 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.7 0.7 2.9

4.0 1.4 3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 2.2 0.0 1.9

3.4 0.0 0.7 0.0 0.7 0.7 0.7 0.0 3.4 0.0

2.3 0.0 1.1 0.7 0.0 2.9 0.0 1.9 0.0 2.4

2, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.4 0.7 0.0 3.9 0.0 3.5 1.1

0.0 3.9 0.0 1.8 0.0 0.0 1.4 0.0 0.0 1.1

0.0 0.0 1.9 0.0 2.4 0.0 3.5 0.0 0.7 0.0

1.4 1.8 0.0 2.7 0.0 0.0 0.7 0.0 0.0 0.0

0.7 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.7 0.7 2.8

3.9 1.4 3.5 0.7 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 2.2

3.5 0.0 0.7 0.0 0.7 0.7 0.7 0.0 2.8 0.0

1.1 1.1 0.0 0.0 0.0 2.8 0.0 2.2 0.0 3.6

2, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.1 0.0 0.0 4.2 0.0 3.6 1.6

0.0 3.9 0.0 1.4 0.0 0.0 0.7 0.0 0.0 0.7

0.0 0.0 1.9 0.0 1.1 0.0 3.4 0.0 0.0 0.0

1.1 1.4 0.0 2.6 0.0 0.0 0.7 0.0 0.0 0.7

0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.8 0.0 2.9 0.0 2.8

4.2 0.7 3.4 0.7 0.0 0.0 1.1 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 1.1

3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0 3.2 0.0

1.6 0.7 0.0 0.7 0.0 2.8 0.0 1.1 0.0 3.2

2, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.7 0.0 1.6 0.0 0.0 3.0 0.0 3.4 1.9

0.7 3.9 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0

0.0 0.0 1.1 0.0 1.4 0.0 3.6 0.0 0.0 0.0

1.6 0.0 0.0 1.6 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.4 0.0 3.4

3.0 1.8 3.6 0.7 0.0 0.0 1.1 0.0 1.1 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 1.6 0.0 2.8

3.4 0.0 0.0 0.0 0.0 0.0 1.1 0.0 4.4 0.0

1.9 0.0 0.0 0.0 0.0 3.4 0.0 2.8 0.0 3.3

3, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 0.7 0.7 0.0 3.7 0.0 3.7 2.1

0.0 3.9 0.0 1.4 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 1.6 0.0 1.8 0.0 3.3 0.0 0.0 0.0

0.7 1.4 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0

0.7 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 3.7 0.0 2.9 1.1 3.1

3.7 1.6 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 2.5

3.7 0.0 0.0 0.0 0.0 1.1 0.0 0.0 3.7 0.0

2.1 0.0 0.0 0.0 0.7 3.1 0.0 2.5 0.0 2.6

3, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.4 0.7 0.0 1.1 0.0 0.0 4.1 0.0 3.6 1.8

0.7 3.9 0.0 1.6 0.0 0.0 0.7 0.0 0.7 0.7

0.0 0.0 0.0 0.0 1.4 0.0 3.3 0.0 0.0 0.0

1.1 1.6 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.1 0.0 2.6

4.1 0.7 3.3 0.0 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 1.6 0.7 1.4

3.6 0.7 0.0 0.0 0.0 0.0 0.0 0.7 2.9 0.0

1.8 0.7 0.0 0.0 0.0 2.6 0.0 1.4 0.0 3.6

3, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.4 0.0 0.0 3.9 0.0 3.8 1.1

0.0 3.8 0.0 1.6 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.4 0.0 3.4 0.0 0.0 0.0

1.4 1.6 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.9 0.0 2.4 1.4 2.6

3.9 1.6 3.4 0.0 0.0 0.0 1.9 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 2.6

3.8 0.0 0.0 0.0 0.0 1.4 0.7 0.0 3.8 0.0

1.1 0.0 0.0 0.7 0.0 2.6 0.0 2.6 0.0 2.9

3, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 1.6 0.0 0.0 3.8 0.0 3.6 1.9

0.0 4.0 0.0 1.8 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 1.1 0.0 1.1 0.0 3.0 0.0 0.0 0.7

1.6 1.8 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.8 0.0 2.6 1.6 2.8

3.8 0.7 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.9 0.0 1.9

3.6 0.0 0.0 0.0 0.0 1.6 0.0 0.0 3.4 0.0

1.9 0.0 0.7 0.0 0.0 2.8 0.0 1.9 0.0 3.4

3, 4

Figure 15: Annotated heatmaps for verifying fitting in Fashion MNIST. The labels 0 to 9 mean “T-shirt/top”,
“Trouser”, “Pullover”, “Dress”, “Coat”, “Sandal”, “Shirt”, “Sneaker”, “Bag”, and “Ankle boot”, respectively.
The values are the logarithm of the occurrence of pairings (i, j) plus 1 in a batch of size 256. Darker colors
indicate higher values. Each epoch is equally divided into 5 collection of batches. The label “e, b” at the
bottom of each heatmap denotes the bth collection within the eth epoch. Therefore, the heatmaps displayed
are for the first 4 epochs only. Initially, the few nonzero entries indicate limited sample diversity. As training
progresses, more entries became nonzero, reflecting a broader sample distribution across the mode space,
which corresponds to the fitting phase. Unlike MNIST, the phase of fitting in Fashion MNIST take place
rapidly because the off-diagonal values stabilize quickly. It is important to note that the large values of some
off-diagonal entries do not necessarily imply severe mode mixture; for instance, “T-shirt”, “Pullover”, and
“Shirt” are often confused in Fashion MNIST classification tasks.

47



Published in Transactions on Machine Learning Research (03/2025)

G.3 Illustration of Particle Dynamics in Real Dataset

In this subsection, we use the CIFAR-10 dataset to illustrate particle dynamics in real dataset, particularly
focusing on their relationship with mode collapse.

Methods. To investigate particle dynamics, we set fixed noise vectors and track their corresponding gener-
ated images (referred to as particles) across different epochs. For each particle, we compute two key metrics:
(i) the discriminator gradient norm, ∥∇d(x)/d(x)∥2; and (ii) the steepness of the generator, ∥Jg(x)∥2. We
visualize the generated images across epochs and analyze how these metrics evolve during training.

Results. From the visualizations, we observe that particles initially appear vague and gradually align
with the modes, which supports our discussion in section 3.1. Over time, they move closer to the modes, as
described in section 3.2, and eventually collapse. For the steepness metric, ∥Jg(x)∥2, we find that it increases
in the early stages of training, likely due to the generator aligning the noise prior with the modes, consistent
with the analysis in theorem 3.3. Later, it stabilizes but drops sharply to near zero at collapse theorem 4.2.
In contrast, the discriminator gradient norm, ∥∇d(x)/d(x)∥2, shows oscillatory behavior throughout training
but spikes sharply at the point of collapse, aligning with our findings in section 4.1. These results provide
particle-level evidence that our theoretical findings approximately hold in real datasets, further validating
our analysis.

0 20 40 60 80 100
Epoch

10 1

100

101

102

103

||
d(

x)
/d

(x
)||

2

0 20 40 60 80 100
Epoch

101

102

103

104

St
ee

pn
es

s

Figure 16: Visualization of particle dynamics on the CIFAR-10 dataset. The top row shows the evolution of
particles (generated images) across training epochs, specifically at epochs 0, 4, 9, 14, . . ., and 99. The bottom
left plot illustrates the discriminator gradient norm, ∥∇d(x)/d(x)∥2, for each particle over training epochs
(indicated by different colors), while the bottom right plot shows the steepness of the generator, ∥Jg(x)∥2.
These visualizations highlight the transition of particles from initial noise to alignment with modes, and
eventually to collapse, validating our theoretical findings.

48



Published in Transactions on Machine Learning Research (03/2025)

G.4 Comparison with the FID score

We present a comparison between ∥∇d(x)/d(x)∥2 and the FID score in fig. 17, complementing the analysis
in section 6, where steepness was compared with the FID score. A connection emerges between the behavior
of ∥∇d(x)/d(x)∥2 and the FID score: During the early training epochs, ∥∇d(x)/d(x)∥2 remains small,
corresponding to a rapid decline in the FID score. As training progresses, ∥∇d(x)/d(x)∥2 begins to oscillate
while gradually increasing, with the FID score decreasing at a slower rate. This trend likely reflects the
discriminator’s behavior approaching the condition implied by assumption 4.1. For MNIST and CIFAR-10,
the stopping point is triggered by a proportional drop in steepness, without a concurrent rapid increase
in both ∥∇d(x)/d(x)∥2 and the FID score. In the case of Fashion MNIST, our early stopping algorithm
halts training when ∥∇d(x)/d(x)∥2 surpasses a predefined threshold, effectively preventing a deterioration
in sample quality.

0 10 20 30 40 50
Epochs

0

1

2

3

4

5

||
d(

x)
/d

(x
)||

2

×102

90% Percentile of || d(x)/d(x)||2
Stop epoch 46: Steepness drop
FID score

0

1

2

3

4

5

6

7

FI
D 

sc
or

e

×102

0 25 50 75 100 125
Epochs

0

1

2

3

4

5
||

d(
x)

/d
(x

)||
2

×103

90% Percentile of || d(x)/d(x)||2
Stop epoch 99: Threshold exceeded
FID score

0

1

2

3

4

5

6

FI
D 

sc
or

e

×102

0 25 50 75 100 125
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

||
d(

x)
/d

(x
)||

2

×103

90% Percentile of || d(x)/d(x)||2
Stop epoch 122: Steepness drop
FID score

0

1

2

3

4

5

FI
D 

sc
or

e

×102

Figure 17: The tendency of ∥∇d(x)/d(x)∥2 and FID score for MNIST, Fashion MNIST, and CIFAR-10,
presented from left to right. Blue circled for ∥∇d(x)/d(x)∥2 and red square-shaped for the FID score. For
MNIST and CIFAR-10, since the stopping point is primarily triggered by steepness dropping below the
threshold, we do not observe a concurrent rapid increase in ∥∇d(x)/d(x)∥2 and the FID score. In contrast,
for Fashion MNIST, when ∥∇d(x)/d(x)∥2 surges past its threshold, we halt training at a point where a
deterioration in sample quality is prevented.

G.5 Comparison with the Duality Gaps

We compare our metrics, ∥∇d(x)/d(x)∥2 and steepness, with the duality gap (Grnarova et al., 2019), along
with its improved counterpart, the perturbed duality gap (Sidheekh et al., 2021). We first briefly introduce
the two metrics, and then show the results in fig. 18.

Duality gap. The duality gap is an optimization concept that measures the difference between the pri-
mal and dual forms of a problem. In GANs, it quantifies the suboptimality of the current generator and
discriminator. For parameters (θg, θd) at a given iteration, the duality gap is defined as:

DG(θg, θd) = max
θ′

d
∈Θd

F (θg, θ′
d) − min

θ′
g∈Θg

F (θ′
g, θd), (168)

where Θd and Θg are the parameter spaces for the discriminator and generator, respectively, and F is the
objective function of the Vanilla GAN: F (θg, θd) = Ex∼pdata [log d(x)] +Ez∼pz [log(1 − d(g(z)))]. In practice,
Grnarova et al. (2019) proposed to estimate the duality gap through the following steps:

1. Train the GAN to iteration t, obtaining parameters (θt
g, θt

d).

2. Find the worst-case discriminator and generator by optimizing one while keeping the other fixed:

θworst
d ≈ arg max

θ′
d

∈Θd

F (θt
g, θ′

d), θworst
g ≈ arg min

θ′
g∈Θg

F (θ′
g, θt

d). (169)

3. Estimate the duality gap as: DG(θt
g, θt

d) ≈ F (θt
g, θworst

d ) − F (θworst
g , θt

d).

49



Published in Transactions on Machine Learning Research (03/2025)

Perturbed duality gap. The perturbed duality gap, introduced by Sidheekh et al. (2021), improves upon
the standard duality gap by more effectively distinguishing between Nash and non-Nash critical points.
This metric performs local perturbations to the parameters (θt

g, θt
d) with Gaussian noise before the second

optimization step, helping the model escape from saddle points. This ensures the subsequent optimization
does not get stuck in suboptimal regions.

Results. We compare ∥∇d(x)/d(x)∥2 and the steepness with the vanilla and perturbed duality gaps across
three datasets: MNIST, Fashion MNIST, and CIFAR-10, as shown in fig. 18. In the first row, ∥∇d(x)/d(x)∥2
is plotted alongside the duality gaps. In the second row, the steepness is compared against the duality
gaps. Prior to the collapse, both duality gaps decrease with oscillations, while ∥∇d(x)/d(x)∥2 increase with
oscillations. After collapse, the vanilla duality gap drops to zero, mirroring the behavior of steepness. In
contrast, the perturbed duality gap oscillates, making it difficult to pinpoint the beginning of collapse. These
results demonstrate the robustness of our metrics, which consistently and clearly detect the collapse phase.

0 10 20 30 40 50
Epochs

0

1

2

3

4

5

||
d(

x)
/d

(x
)||

2

×102

90% Percentile of || d(x)/d(x)||2
Stop epoch 46: Steepness drop
Vanilla duality gap
Perturbed duality gap

0

1

2

3

4

Du
al

ity
 g

ap

×101

0 25 50 75 100 125
Epochs

0

1

2

3

4

5

||
d(

x)
/d

(x
)||

2

×103

90% Percentile of || d(x)/d(x)||2
Stop epoch 99: Threshold exceeded
Vanilla duality gap
Perturbed duality gap

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Du
al

ity
 g

ap

×101

0 25 50 75 100 125
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

||
d(

x)
/d

(x
)||

2

×103

90% Percentile of || d(x)/d(x)||2
Stop epoch 122: Steepness drop
Vanilla duality gap
Perturbed duality gap

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Du
al

ity
 g

ap

×101

0 10 20 30 40 50
Epochs

0

1

2

3

4

St
ee

pn
es

s

×102

Steepness
Stop epoch 46: Steepness drop
Vanilla duality gap
Perturbed duality gap

0

1

2

3

4

Du
al

ity
 g

ap

×101

0 25 50 75 100 125
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

St
ee

pn
es

s

×103

Steepness
Stop epoch 99: Threshold exceeded
Vanilla duality gap
Perturbed duality gap

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Du

al
ity

 g
ap

×101

0 25 50 75 100 125
Epochs

0.0

0.5

1.0

1.5

2.0
St

ee
pn

es
s

×103

Steepness
Stop epoch 122: Steepness drop
Vanilla duality gap
Perturbed duality gap

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Du
al

ity
 g

ap

×101

Figure 18: The first row compares ∥∇d(x)/d(x)∥2 with the duality gaps for MNIST, Fashion MNIST, and
CIFAR-10, from left to right. The second row compares the steepness with the duality gaps for the same
datasets. Blue circled represents ∥∇d(x)/d(x)∥2, light blue square-shaped represents steepness, while orange
triangle-shaped and orange square-shaped represent the vanilla and perturbed duality gaps, respectively.
Prior to the collapse, ∥∇d(x)/d(x)∥2 exhibits a similar trend with the perturbed duality gap. After collapse,
the vanilla duality gap often drops to zero, mirroring the behavior of steepness, while the perturbed duality
gap oscillates, making it difficult to determine whether collapse has occurred.

G.6 GAN Training Losses

We present the loss curves under the same experimental settings as in figs. 5, 6 and 17 to 19. The loss
functions are defined as

Ldω = −Ex∼pdata [log(dω(x))] − Ez∼pz [log(1 − dω(gθ(z)))],
Lgθ

= −Ez∼pz [log(dω(gθ(z)))],
(170)

and are computed using torch.nn.functional.binary_cross_entropy. The blue circled markers stand
for discriminator losses, while the red square-shaped markers represent generator losses. Notably, after the
collapse, the discriminator and generator losses either escalate to large values or drop to zero. While this
divergence behavior is consistent across experiments, it poses challenges when used as an early stopping

50



Published in Transactions on Machine Learning Research (03/2025)

criterion, particularly in encoding a practical termination condition. The simplest approach is perhaps
monitoring both losses and terminating when they increase or decrease beyond a certain threshold. However,
this strategy comes with several limitations: (i) the interpretability of GAN losses is limited. GAN losses do
not directly reflect the quality of generated samples. For instance, an increase in discriminator loss might
indicate overfitting rather than a collapse of generator performance, while an increase in generator loss could
stem from the discriminator becoming overly sensitive, leading to loss fluctuations without a corresponding
drop in sample quality. (ii) threshold values may be difficult to generalize across experiments. The dynamics
of GAN training are highly sensitive to hyperparameters such as learning rates, batch sizes, and architecture
choices. Consequently, the patterns of loss escalation can vary significantly, making it challenging to define a
universal threshold for early stopping. Nevertheless, it is interesting to see if GAN loss functions can also be
used for designing alternative early stopping criteria that leverage their dynamic behaviors to predict mode
collapse.

0 10 20 30 40 50
Epochs

10 3

10 2

10 1

100

101

Lo
ss

es

Discriminator loss
Generator loss
Collapse epoch 46

0 20 40 60 80 100 120 140
Epochs

100

101

102

Lo
ss

es

Discriminator loss
Generator loss
Collapse epoch 128

0 20 40 60 80 100 120
Epochs

100

101

102

Lo
ss

es

Discriminator loss
Generator loss
Collapse epoch 122

Figure 19: Loss curves of the discriminator and generator in experiments on MNIST, Fashion MNIST, and
CIFAR-10 (from left to right). Blue circled represent discriminator losses, while red square-shaped represent
generator losses. The black vertical lines indicate the stopping epochs determined by our early stopping
algorithm. The exact collapse epochs are 46, 128 and 122, for the respective datasets. Notably, after the
collapse, both losses either escalate to large values or drops to zero.

G.7 Impact on the Early Stopping Metric after Applying Techniques to Mitigate Mode Collapse

In this subsection, we validate our early stopping metric’s effectiveness by demonstrating that injecting noise
into the intermediate layers of the discriminator combats mode collapse and pushes back the metric.

Figure 20: The generated images from the noise-free GAN and the noised GAN. Upper: Noise-free GAN.
Lower: Noised GAN. The noise-free GAN collapses at the 54th epoch, whereas the noised GAN consistently
produces high-quality images.

51



Published in Transactions on Machine Learning Research (03/2025)

Experimental setup. We devise two generator models of identical architecture and implement two dis-
criminators, one adhering to the original design (which we will refer to as “noise-free”) and the other modified
to incorporate Gaussian noise with a standard deviation of 0.1 before forwarding the input to the subsequent
layer (which we will refer to as “noised”). Both generators and discriminators are initialized using the same
random seed. During training, the four networks are concurrently trained, with each generator paired with
a discriminator. We present the generated images of the two models on Fashion MNIST in fig. 20 and
histograms of ∥∇d(x)/d(x)∥2 in fig. 21.

101 1.1 × 101 1.2 × 101 1.3 × 101 1.4 × 101 1.5 × 101 1.6 × 101

0 1002 1004 100 1016 101 1028

101 10210 101 10212 101 102 10314 101 102 10316 101 102 103 104 10518

101 102 103 10420 101 102 103 10422 101 102 103 10424 101 102 103 104 10526 101 102 103 104 10528

101 102 10330 101 102 103 104 10532 101 102 10334 100 101 102 10336 100 101 10238

101 102 103 10440 101 102 103 10442 10 1 100 101 10244 101 102 103 104 10546 100 101 102 103 10448

101 102 103 104 10550 101 102 103 104 105 10652 101 102 103 10454 101 102 103 104 10556 101 102 103 104 10558

Figure 21: Histograms of the values of ∥∇d(x)/d(x)∥2 and their 90th percentile across epochs. The epochs
are displayed at the bottom of each histogram. The x-axis represents ∥∇d(x)/d(x)∥2 values on a logarithmic
scale, while the y-axis denotes density. Results are differentiated by color: red for the model with noise
and blue for the model without noise. Preceding the 54th epoch where the noise-free GAN collapses, the
noised model nearly always exhibits lower ∥∇d(x)/d(x)∥2 values compared to its noise-free counterpart.
Post 54th epoch, this relationship reverses. Notably, in the noise-free model, ∥∇d(x)/d(x)∥2 tends towards
zero, contributing to this observed divergence.

Results. The noise-free GAN collapses at the 54th epoch, while the noised GAN consistently generates
high-quality images. The introduction of noise results in an overall decrease in the ||∇d(x)/d(x)||2 compared
to its noise-free counterpart before the 54th epoch. After the 54th epoch, the opposite trend is observed,

52



Published in Transactions on Machine Learning Research (03/2025)

attributed to the vanishing of ||∇d(x)/d(x)||2 in the noise-free GAN. This indicates that the strategy of in-
jecting noise to mitigate mode collapse leads to an overall decrease in our proposed metric, thereby validating
the effectiveness of the metric.

Furthermore, from our experiments, we observe that collapse is avoided altogether in the noised GAN.
Specifically, we trained the noised GAN for 1000 epochs and did not detect any signs of collapse throughout
the training process. This supports the understanding that adding noise to the discriminator stabilizes
GAN training by mitigating extreme gradient magnitudes near mode boundaries, which are a primary
contributor to collapse. Regarding the early stopping algorithm, it remains effective in the noised GAN
setting. The algorithm identifies a point in the training process where sample quality and diversity are well-
retained. However, we do not observe significant sample deterioration or signs of subtle collapse even after
this identified point. This suggests that the early stopping algorithm’s role in the noised setting may focus
more on preserving computational efficiency rather than strictly avoiding collapse. A possible explanation for
this behavior is that the added noise reduces the discriminator’s capacity to provide overly precise gradients,
which prevents the discriminator from overfitting to specific modes. This stabilization mechanism ensures
that the generator continues to explore and cover the data distribution effectively, even in later training
stages. As a result, even subtle collapses do not seem to occur.

H Extension to Other Divergence GANs

In this section, we outline how to extended to other Divergence GANs. We focus on the f -GAN proposed
in (Nowozin et al., 2016) with the f -divergence defined as

Df (Qθ||pdata) =
∫

x

pdata(x)f
(pdata(x)

Qθ(x)

)
dx. (171)

The variational lower bound of Df (Qθ||pdata) is used as the training objective:

F (θ; ω) = Ex∼pdata

[
gf

(
Vω(x)

)]
+ Ex∼Qθ

[
− f∗(

gf (Vω(x))
)]

. (172)

Here, f∗ is the Fenchel conjugate of f , gf is analogous to the generator and Vω is similar to the discriminator.
We consider its variant where the objective function of the generator is modified to

−Ex∼Qθ

[
gf

(
Vω(x)

)]
, (173)

while the objective function of the discriminator remains unchanged.

General methodology. The key to analyzing Divergence GANs is their interpretation as particle models.
The update of the generator Qθ can be recasted as: (i) generate particles Zi = Qθ(zi); and (ii) update the
particles Ẑi = Zi + g′

f (Vω(Zi))∇Vω(Zi); and (iii) update θ by descending its stochastic gradient with respect
to the Mean Square Error (MSE) loss betweeen Ẑi’s and g(zi)’s.

Fitting phase. We may plot the vector field g′
f (Vω(Zi))∇Vω(Zi) instead of the original ∇d(x)/d(x) to

visualize the updating process of particles, which promotes the fitting of the modes. Only theorems 3.3
and 3.4 in section 3.2 needs to be modified to accommodate the desired Divergence GAN.

Collapse phase. In section 4.1, apart from modifying the update formula for particles, a more appropriate
model for the discriminator needs to be established and a new threshold may be developed on the basis of
it.

I Visualizing Generator Functions

This section visualizes generator functions g that satisfy g#pz = pdata, where pz ∼ N (0, 1) and pdata is
a Gaussian mixture, as shown in fig. 22. For qualitative effects of the parameters in pdata, please refer
to table 3. We then discuss about how to plot fig. 22. While Φ can be computed in MATLAB using the

53



Published in Transactions on Machine Learning Research (03/2025)

built-in function normcdf, Ψ−1 typically necessitates solving a non-linear equation at each evaluation point.
To mitigate computational expenses, we choose to calculate the inverse of g, which is g−1 = Φ−1 ◦ Ψ. In
this context, Ψ can be computed by employing gmdistribution to construct a Gaussian mixture model,
followed by utilizing cdf to assess the cumulative distribution function (CDF) of the model at a specific
point. To generate a plot of g, a mere interchange of the x and g−1(x) in the plot function suffices.

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

-10

-8

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 0 5

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 22: The functions g that satisfy g#pz = pdata, where pdata is a Gaussian mixture. First: Varying
the mean µ. Second: Varying the variance σ2. Third: Varying the mixing coefficients {αi}n

i=1. Fourth:
Varying the number of Gaussians n. Please refer to table 3 for a detailed description.

Table 3: Qualitative effects of the parameters in pdata ∼ α1N (µ1, σ2) + · · · + αnN (µn, σ2) on g.

Parameters Qualitative Effects on g

Means {µi}n
i=1 Larger ∥µi − µi+1∥2 increases the magnitude of g′ between the two modes.

Variances σ2 Larger σ2 increases the asymptotic slope of g as x → ∞.
Mixing coefficients {αi}n

i=1 Different combinations of αi incline g towards specific modes.
Number of Gaussians n Larger n increases the number of segments in g.

J Discussions

In this section, we provide additional intuitions and implications.

In terms of applicability scope, our theoretical findings are primarily derived from Divergence GANs, specifi-
cally NSGAN, where we can leverage their particle model interpretations. While Divergence GANs represent
a significant category within GANs, they do not encompass some prominent GAN models, such as Wasser-
stein GAN with gradient penalty and MMD GAN. Exploring how our theoretical findings can be extended
to incorporate these Integral Probability Metric (IPM) based GAN variants presents an intriguing avenue
for future research.

Regarding the proposed two phases, it is important to note that not all Divergence GANs may fit neatly into
the this characterization. While we often observe such empirical patterns, we acknowledge the possibility
that when networks are not well-initialized or when advanced techniques are used, GAN training may deviate
from the fitting phase entirely. However, these inquiries may spark independent interests and are beyond
the scope of our study.

In our numerical experiments, we used relatively small-scale real-world datasets compared to modern
datasets. This choice was deliberate as we aimed to assess the effectiveness of our early stopping algorithm
in detecting the transition from fitting to collapse phases. Modern datasets often comprise exponentially
more modes, which could potentially limit the efficacy of our algorithm, particularly considering that our
algorithm takes the number of modes as an input parameter.

54


